scholarly journals Inevitable Variance of Electric Field of Plasma Membrane

Author(s):  
Bernard Delalande ◽  
Hirohisa Tamagawa ◽  
Titus Mulembo ◽  
Vladimir Matveev

An embryonic version of membrane theory can be date back to the Bernstein's work reported more than a hundred years ago. Such an originally old work has evolved conceptually and mathematically up until today, and it plays a central role in current membrane theory. Goldman-Hodgkin-Katz equation (GHK eq.) is one of the math-based monumental works, which constitutes the present membrane theory. Goldman theoretically derived GHK eq., but its physiological meaning was provided by the two renowned scientists, Hodgkin and Katz. These two employed an assumption that the electric field (EF) across the plasma membrane is constant to validate the GHK eq. physiologically. Proposal of Hodgkin-Huxley model (HH model) is another math-based monumental works developed from the membrane theory and now forms a fundamental part of the current membrane theory. GHK eq. and HH model are quite fundamental central concepts in the current physiology. Despite the broad acceptance of GHK eq. at present time, its prerequisite that the EF within the plasma membrane is constant is hardly believable. Especially when the action potential is generated, it sounds totally nonsense. Furthermore, the existence of constant EF within the plasma membrane is conceptually almost in conflict with the HH model. The authors will discuss those problematic issues the membrane theory inherits.

2005 ◽  
Vol 89 (6) ◽  
pp. 3741-3756 ◽  
Author(s):  
J.M.A.M. Kusters ◽  
M.M. Dernison ◽  
W.P.M. van Meerwijk ◽  
D.L. Ypey ◽  
A.P.R. Theuvenet ◽  
...  

2009 ◽  
Vol 102 (2) ◽  
pp. 670-681 ◽  
Author(s):  
Ren-Zhi Zhan ◽  
J. Victor Nadler

In temporal lobe epilepsy, loss of inhibitory neurons and circuit changes in the dentate gyrus promote hyperexcitability. This hyperexcitability is compensated to the point that dentate granule cells exhibit normal or even subnormal excitability under some conditions. This study explored the possibility that compensation involves enhanced tonic GABA inhibition. Whole cell patch-clamp recordings were made from normotopic granule cells in hippocampal slices from control rats and from both normotopic and hilar ectopic granule cells in slices from rats subjected to pilocarpine-induced status epilepticus. After status epilepticus, tonic GABA current was an order of magnitude greater than control in normotopic granule cells and was significantly greater in hilar ectopic than in normotopic granule cells. These differences could be observed whether or not the extracellular GABA concentration was increased by adding GABA to the superfusion medium or blocking plasma membrane transport. The enhanced tonic GABA current had both action potential–dependent and action potential–independent components. Pharmacological studies suggested that the small tonic GABA current of granule cells in control rats was mediated largely by high-affinity α4βxδ GABAA receptors but that the much larger current recorded after status epilepticus was mediated largely by the lower-affinity α5βxγ2 GABAA receptors. A large α5βxγ2-mediated tonic current could be recorded from controls only when the extracellular GABA concentration was increased. Status epilepticus seemed not to impair the control of extracellular GABA concentration by plasma membrane transport substantially. Upregulated tonic GABA inhibition may account for the unexpectedly modest excitability of the dentate gyrus in epileptic brain.


Author(s):  
A.R. Hardham ◽  
B.E.S. Gunning

Microtubules in the plant cell cortex are usually aligned parallel to microfibrils of cellulose that are being deposited in the cell wall, and are considered to function in guiding or orienting cellulose synthetase complexes that lie in or on the plasma membrane. The cellulose component is largely responsible for the mechanical reaction of the wall to turgor forces, thereby determining cell size and shape, and therefore the role of the cortical microtubules is a fundamental part of the overall morphogenetic process in plants. It is important to determine the structure of cortical arrays of microtubules and to learn how the cell regulates their development, neither of these aspects having been investigated adequately since the original description likened the microtubules to “hundreds of hoops around the cell”.


1964 ◽  
Vol 47 (3) ◽  
pp. 545-565 ◽  
Author(s):  
Alan Finkelstein

When current of proper polarity and sufficient intensity is passed across isolated frog skin or toad bladder, an action potential of about 200 mv and 10 msec. duration with a sharp threshold and refractory period of several seconds' duration is elicited. Interruption of current during the action potential abolishes the response, and, as shown by appropriate bridge measurements, this occurs because the action potential results from resistance variations during the current flow. The ionic composition of the medium bathing the frog skin was varied, and it was found that the response is relatively insensitive to changes in the solution bathing the inner surface, but rapidly and reversibly affected by changes in the outer solution, particularly by replacement of sodium with potassium and by variations of calcium concentration. It was also observed that the resistance of the skin and action potential across it are reversibly altered by metabolic inhibitors and that these alterations occur independently of any changes in the intrinsic EMF of the system. From the finding that the action potential across frog skin and toad bladder results from a time-variant resistance, it is argued that this same phenomenon can be the basis of electrical excitability in general. This would attribute physical significance to the equivalent circuit commonly employed to represent the plasma membrane; i.e., the plasma membrane would be a mosaic structure of spatially separate permselective regions.


2018 ◽  
Vol 37 (01) ◽  
pp. 71-82 ◽  
Author(s):  
Albert Martí ◽  
Juan J. Pérez ◽  
Jordi Madrenas

2006 ◽  
Vol 90 (10) ◽  
pp. 3608-3615 ◽  
Author(s):  
W. Frey ◽  
J.A. White ◽  
R.O. Price ◽  
P.F. Blackmore ◽  
R.P. Joshi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document