plasma membrane phospholipid
Recently Published Documents


TOTAL DOCUMENTS

53
(FIVE YEARS 7)

H-INDEX

24
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Ffion B Thomas ◽  
Deike J Omnus ◽  
Jakob M Bader ◽  
Gary HC Chung ◽  
Nozomu Kono ◽  
...  

The evolutionarily conserved extended synaptotagmin (E-Syt) proteins are calcium-activated lipid transfer proteins that function at contacts between the endoplasmic reticulum and plasma membrane (ER-PM contacts). However, roles of the E-Syt family members in PM lipid organisation remain unclear. Among the E-Syt family, the yeast tricalbin (Tcb) proteins are essential for PM integrity upon heat stress, but it is not known how they contribute to PM maintenance. Using quantitative lipidomics and microscopy, we find that the Tcb proteins regulate phosphatidylserine homeostasis at the PM. Moreover, upon heat-induced membrane stress, Tcb3 co-localises with the PM protein Sfk1 that is implicated in PM phospholipid asymmetry and integrity. The Tcb proteins also promote the recruitment of Pkh1, a stress-activated protein kinase required for PM integrity. Phosphatidylserine has evolutionarily conserved roles in PM organisation, integrity, and repair. We suggest that phospholipid regulation is an ancient essential function of E-Syt family members in PM integrity.


2020 ◽  
Vol 295 (30) ◽  
pp. 10180-10194 ◽  
Author(s):  
Hanayo Nakanishi ◽  
Katsumasa Irie ◽  
Katsumori Segawa ◽  
Kazuya Hasegawa ◽  
Yoshinori Fujiyoshi ◽  
...  

ATP11C, a member of the P4-ATPase flippase, translocates phosphatidylserine from the outer to the inner plasma membrane leaflet, and maintains the asymmetric distribution of phosphatidylserine in the living cell. We present the crystal structures of a human plasma membrane flippase, ATP11C–CDC50A complex, in a stabilized E2P conformation. The structure revealed a deep longitudinal crevice along transmembrane helices continuing from the cell surface to the phospholipid occlusion site in the middle of the membrane. We observed that the extension of the crevice on the exoplasmic side is open, and the complex is therefore in an outward-open E2P state, similar to a recently reported cryo-EM structure of yeast flippase Drs2p–Cdc50p complex. We noted extra densities, most likely bound phosphatidylserines, in the crevice and in its extension to the extracellular side. One was close to the phosphatidylserine occlusion site as previously reported for the human ATP8A1–CDC50A complex, and the other in a cavity at the surface of the exoplasmic leaflet of the bilayer. Substitutions in either of the binding sites or along the path between them impaired specific ATPase and transport activities. These results provide evidence that the observed crevice is the conduit along that phosphatidylserine traverses from the outer leaflet to its occlusion site in the membrane and suggest that the exoplasmic cavity is important for phospholipid recognition. They also yield insights into how phosphatidylserine is incorporated from the outer leaflet of the plasma membrane into the transmembrane.


2020 ◽  
Vol 295 (23) ◽  
pp. 7958-7969 ◽  
Author(s):  
Crystal R. Archer ◽  
Benjamin T. Enslow ◽  
Chase M. Carver ◽  
James D. Stockand

The plasma membrane phospholipid phosphatidylinositol 4,5-bisphosphate (PIP2) regulates the activity of diverse ion channels to include the epithelial Na+ channel ENaC. Whether PIP2 regulation of ENaC is due to a direct phospholipid-protein interaction, remains obscure. To date, possible interaction of PIP2 with ENaC primarily has been tested indirectly through assays of channel function. A fragment-based biochemical analysis approach is used here to directly quantify possible PIP2-ENaC interactions. We find using the CIBN-CRY2 optogenetic dimerization system that the phosphoryl group positioned at carbon 5 of PIP2 is necessary for interaction with ENaC. Previous studies have implicated conserved basic residues in the cytosolic portions of β- and γ-ENaC subunits as being important for PIP2-ENaC interactions. To test this, we used synthetic peptides of these regions of β- and γ-ENaC. Steady-state intrinsic fluorescence spectroscopy demonstrated that phosphoinositides change the local conformation of the N terminus of β-ENaC, and two sites of γ-ENaC adjacent to the plasma membrane, suggesting direct interactions of PIP2 with these three regions. Microscale thermophoresis elaborated PIP2 interactions with the N termini of β- (Kd ∼5.2 μm) and γ-ENaC (Kd ∼13 μm). A weaker interaction site within the carboxyl terminus of γ-ENaC (Kd ∼800 μm) was also observed. These results support that PIP2 regulates ENaC activity by directly interacting with at least three distinct regions within the cytoplasmic domains of the channel that contain conserved basic residues. These interactions are probably electrostatic in nature, and are likely to bear a key structural role in support of channel activity.


Author(s):  
Hanayo Nakanishi ◽  
Katsumasa Irie ◽  
Katsumori Segawa ◽  
Kazuya Hasegawa ◽  
Yoshinori Fujiyoshi ◽  
...  

AbstractATP11C, a member of P4-ATPase flippase, exclusively translocates phosphatidylserine from the outer to the inner leaflets of the plasma membrane, and maintains the asymmetric distribution of phosphatidylserine in the living cell. However, the mechanisms by which ATP11C translocates phosphatidylserine remain elusive. Here we show the crystal structures of a human plasma membrane flippase, ATP11C-CDC50A complex, in an outward-open E2P conformation. Two phosphatidylserine molecules are in a conduit that continues from the cell surface to the occlusion site in the middle of the membrane. Mutations in either of the phosphotidylserine binding sites or along the pathway between significantly impairs specific ATPase and transport activities. We propose a model for phosphatidylserine translocation from the outer to the inner leaflet of the plasma membrane.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Johanna Lattner ◽  
Weihua Leng ◽  
Elisabeth Knust ◽  
Marko Brankatschk ◽  
David Flores-Benitez

An efficient vectorial intracellular transport machinery depends on a well-established apico-basal polarity and is a prerequisite for the function of secretory epithelia. Despite extensive knowledge on individual trafficking pathways, little is known about the mechanisms coordinating their temporal and spatial regulation. Here, we report that the polarity protein Crumbs is essential for apical plasma membrane phospholipid-homeostasis and efficient apical secretion. Through recruiting βHeavy-Spectrin and MyosinV to the apical membrane, Crumbs maintains the Rab6-, Rab11- and Rab30-dependent trafficking and regulates the lipid phosphatases Pten and Ocrl. Crumbs knock-down results in increased apical levels of PI(4,5)P2 and formation of a novel, Moesin- and PI(4,5)P2-enriched apical membrane sac containing microvilli-like structures. Our results identify Crumbs as an essential hub required to maintain the organization of the apical membrane and the physiological activity of the larval salivary gland.


2019 ◽  
Author(s):  
Johanna Lattner ◽  
Weihua Leng ◽  
Elisabeth Knust ◽  
Marko Brankatschk ◽  
David Flores-Benitez

AbstractAn efficient vectorial intracellular transport machinery depends on a well-established apico-basal polarity and is a prerequisite for the function of secretory epithelia. Despite extensive knowledge on individual trafficking pathways, little is known about the mechanisms coordinating their temporal and spatial regulation. Here, we report that the polarity protein Crumbs is essential for apical plasma membrane phospholipid-homeostasis and efficient apical secretion. Through recruiting βHeavy-Spectrin and MyosinV to the apical membrane, Crumbs maintains the Rab6-, Rab11- and Rab30-dependent trafficking and regulates the lipid phosphatases Pten and Ocrl. Crumbs knock-down results in increased apical levels of PI(4,5)P2 and formation of a novel, Moesin- and PI(4,5)P2-enriched apical membrane sac containing microvilli-like structures. Our results identify Crumbs as an essential hub required to maintain the organization of the apical membrane and the physiological activity of the larval salivary gland.


2018 ◽  
Author(s):  
Sarah E Stewart ◽  
Avraham Ashkenazi ◽  
Athena Williamson ◽  
David C Rubinsztein ◽  
Kevin Moreau

AbstractAnnexins are phospholipid binding proteins that somehow translocate from the inner leaflet of the plasma membrane to the outer leaflet. For example, Annexin A2 is known to localise to the outer leaflet of the plasma membrane (cell surface) where it is involved in plasminogen activation leading to fibrinolysis and cell migration, among other functions. Despite having well described extracellular functions, the mechanism of annexin transport from the cytoplasmic inner leaflet to the extracellular outer leaflet of the plasma membrane remains unclear. Here, we show that phospholipid flipping activity is crucial for the transport of annexins A2 and A5 across membranes in cells and in liposomes. We identified TMEM16F (anoctamin-6) as a lipid scramblase required for transport of these annexins to the outer leaflet of the plasma membrane. This work reveals a mechanism for annexin translocation across membranes which depends on plasma membrane phospholipid flipping.


Sign in / Sign up

Export Citation Format

Share Document