scholarly journals Synthetic mRNAs; Their Analogue Caps and Contribution to Disease

Author(s):  
Anthony Kyriakopoulos ◽  
Peter McCullough

The structure of synthetic mRNAs as used in vaccination against cancer and infectious diseases contain specifically designed caps followed by sequences of the 5’ untranslated repeats of β-globin gene. The strategy for successful design of synthetic mRNAs by chemically modifying their caps aims to increase resistance to the enzymatic deccapping complex, offer a higher affinity for binding to the eukaryotic translation initiation factor 4E (elF4E) protein and enforce increased translation of their encoded proteins. However, the cellular homeostasis is finely balanced and obeys to specific laws of thermodynamics conferring balance between complexity and growth rate in evolution. An overwhelming and forced translation even under alarming conditions of the cell during a concurrent viral infection, or when molecular pathways are trying to circumvent precursor events that lead to autoimmunity and cancer, may cause the recipient cells to ignore their differential sensitivities which are essential for keeping normal conditions. The elF4E which is a powerful RNA regulon and a potent oncogene governing cell cycle progression and proliferation at a post-transcriptional level, may then be a great contributor to disease development. The mechanistic target of rapamycin (mTOR) axis manly inhibits the elF4E to proceed with mRNA translation but disturbance in fine balances between mTOR and elF4E action may provide a premature step towards oncogenesis, ignite pre-causal mechanisms of immune deregulation and cause maturation (aging) defects.

Diseases ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 57
Author(s):  
Anthony M. Kyriakopoulos ◽  
Peter A. McCullough

The structure of synthetic mRNAs as used in vaccination against cancer and infectious diseases contain specifically designed caps followed by sequences of the 5′ untranslated repeats of β-globin gene. The strategy for successful design of synthetic mRNAs by chemically modifying their caps aims to increase resistance to the enzymatic deccapping complex, offer a higher affinity for binding to the eukaryotic translation initiation factor 4E (elF4E) protein and enforce increased translation of their encoded proteins. However, the cellular homeostasis is finely balanced and obeys to specific laws of thermodynamics conferring balance between complexity and growth rate in evolution. An overwhelming and forced translation even under alarming conditions of the cell during a concurrent viral infection, or when molecular pathways are trying to circumvent precursor events that lead to autoimmunity and cancer, may cause the recipient cells to ignore their differential sensitivities which are essential for keeping normal conditions. The elF4E which is a powerful RNA regulon and a potent oncogene governing cell cycle progression and proliferation at a post-transcriptional level, may then be a great contributor to disease development. The mechanistic target of rapamycin (mTOR) axis manly inhibits the elF4E to proceed with mRNA translation but disturbance in fine balances between mTOR and elF4E action may provide a premature step towards oncogenesis, ignite pre-causal mechanisms of immune deregulation and cause maturation (aging) defects.


1997 ◽  
Vol 17 (12) ◽  
pp. 6876-6886 ◽  
Author(s):  
S Z Tarun ◽  
A B Sachs

mRNA translation in crude extracts from the yeast Saccharomyces cerevisiae is stimulated by the cap structure and the poly(A) tail through the binding of the cap-binding protein eukaryotic translation initiation factor 4E (eIF4E) and the poly(A) tail-binding protein Pab1p. These proteins also bind to the translation initiation factor eIF4G and thereby link the mRNA to the general translational apparatus. In contrast, uncapped, poly(A)-deficient mRNA is translated poorly in yeast extracts, in part because of the absence of eIF4E and Pab1p binding sites on the mRNA. Here, we report that uncapped-mRNA translation is also repressed in yeast extracts due to the binding of eIF4E to eIF4G. Specifically, we find that mutations which weaken the eIF4E binding site on the yeast eIF4G proteins Tif4631p and Tif4632p lead to temperature-sensitive growth in vivo and the stimulation of uncapped-mRNA translation in vitro. A mutation in eIF4E which disturbs its ability to interact with eIF4G also leads to a stimulation of uncapped-mRNA translation in vitro. Finally, overexpression of eIF4E in vivo or the addition of excess eIF4E in vitro reverses these effects of the mutations. These data support the hypothesis that the eIF4G protein can efficiently stimulate translation of exogenous uncapped mRNA in extracts but is prevented from doing so as a result of its association with eIF4E. They also suggest that some mRNAs may be translationally regulated in vivo in response to the amount of free eIF4G in the cell.


2006 ◽  
Vol 175 (3) ◽  
pp. 415-426 ◽  
Author(s):  
Biljana Culjkovic ◽  
Ivan Topisirovic ◽  
Lucy Skrabanek ◽  
Melisa Ruiz-Gutierrez ◽  
Katherine L.B. Borden

This study demonstrates that the eukaryotic translation initiation factor eIF4E is a critical node in an RNA regulon that impacts nearly every stage of cell cycle progression. Specifically, eIF4E coordinately promotes the messenger RNA (mRNA) export of several genes involved in the cell cycle. A common feature of these mRNAs is a structurally conserved, ∼50-nucleotide element in the 3′ untranslated region denoted as an eIF4E sensitivity element. This element is sufficient for localization of capped mRNAs to eIF4E nuclear bodies, formation of eIF4E-specific ribonucleoproteins in the nucleus, and eIF4E-dependent mRNA export. The roles of eIF4E in translation and mRNA export are distinct, as they rely on different mRNA elements. Furthermore, eIF4E-dependent mRNA export is independent of ongoing RNA or protein synthesis. Unlike the NXF1-mediated export of bulk mRNAs, eIF4E-dependent mRNA export is CRM1 dependent. Finally, the growth-suppressive promyelocytic leukemia protein (PML) inhibits this RNA regulon. These data provide novel perspectives into the proliferative and oncogenic properties of eIF4E.


2019 ◽  
Vol 20 (6) ◽  
pp. 525-535 ◽  
Author(s):  
Laurent Volpon ◽  
Michael J. Osborne ◽  
Katherine L.B. Borden

A major question in cell and cancer biology is concerned with understanding the flow of information from gene to protein. Indeed, many studies indicate that the proteome can be decoupled from the transcriptome. A major source of this decoupling is post-transcriptional regulation. The eukaryotic translation initiation factor eIF4E serves as an excellent example of a protein that can modulate the proteome at the post-transcriptional level. eIF4E is elevated in many cancers thus highlighting the relevance of this mode of control to biology. In this review, we provide a brief overview of various functions of eIF4E in RNA metabolism e.g. in nuclear-cytoplasmic RNA export, translation, RNA stability and/or sequestration. We focus on the modalities of eIF4E regulation at the biochemical and particularly structural level. In this instance, we describe not only the importance for the m7Gcap eIF4E interaction but also of recently discovered non-traditional RNA-eIF4E interactions as well as cap-independent activities of eIF4E. Further, we describe several distinct structural modalities used by the cell and some viruses to regulate or co-opt eIF4E, substantially extending the types of proteins that can regulate eIF4E from the traditional eIF4E-binding proteins (e.g. 4E-BP1 and eIF4G). Finally, we provide an overview of the results of targeting eIF4E activity in the clinic.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 2369-2369
Author(s):  
Steven M. Kornblau ◽  
Chenyue W Hu ◽  
Yihua Qiu ◽  
Suk Young Yoo ◽  
Rebecca A Murray ◽  
...  

Abstract Background. Conceptually mRNA processing and ribosomal regulation should interact as both affect mRNA translation and protein production. We studied protein expression and functional relationships between proteins in AML using a custom made reverse phase protein array (RPPA), probed with 231 strictly validated antibodies. We found a relationship between expression of Ribosomal Protein S6 (HUGO name R6SP, a.k.a. S6RP) and Eukaryotic Translation Initiation Factor 4EBinding Protein 1, (HUGO name EIF4EBP1). R6SP, a 40S ribosomal subunit component, activated by phosphorylation, regulates cell growth via selective mRNA translation. EIF4EBP1 interacts with eIF4E to recruit the 40S ribosomal subunit, thereby affecting ribosomal assembly. When phosphorylated, in response to cellular signaling, it releases eIF4E allowing transcription. Methods. Our RPPA has protein from leukemia enriched cells from 511 newly diagnosed AML patients and was probed with 231 strictly validated antibodies, including antibodies against total RPS6 and forms phosphorylated on S235-236 and S240-244, and against total EIF4EBP1 and forms phosphorylated on T37 & 46, T70 and S65. Expression was compared to normal bone marrow derived CD34+ cells. Interaction networks with the other 224 proteins were generated from the RPPA data using glasso and supplemented by the literature of known interactions. Results. A heatmap of expression of the 3 R6SP and 4 PA2 forms was generated and hierarchical k-and means clustering performed (Fig A). Using the “Prototype Clustering ”method an optimal division into four clusters (Fig B) was determined. This includes an “All-Off” state (18%), a state characterized by weak activation of RPS6 alone (RP-Only, 36%) activation of only EIF4EBP1 (EIF4EBP1-Only, 26%) and a group where both were on simultaneously (Both-On). The RPS6 interactome (Fig B) showed the expected positive correlation with mTOR, and P70 (Hugo RPS6KB1) and a previously unknown, but very strong, negative correlation with transcription factor ZNF296. The EIF4EBP1 interactome showed the expected strong positive correlation with many signal transduction pathways (MAP2K1, MAPK14) and proliferation related proteins (pRB, EIF2AK, EIF2S1, FOXO3) and negative correlation with several transcription factors (GATA3, SPI1, CREB). Cluster membership was unassociated with most clinical features including cytogenetics, FLT3 , RAS and NPM1 mutation, excluding gender (more F in All-Off, more M in Both-On, p=0.01). EIF4EBP1 and Both-On had higher WBC (p=0.0001) and % marrow (p=0.0001) and blood blasts (0.0007) and lower platelet counts (p=0.025). Response rates did not differ, although fewer All-Off were primary refractory. Relapse was more common in EIF4EBP1-Only and Both-On clusters. Overall survival (OS) and remission duration (RemDur) (Fig C) of the EIF4EBP1-Only and Both-On clusters was inferior to that of the All-Off and RP-Only clusters (OS median 41 & 45 vs. 52 &63,p=0.06, RemDur 39 & 27 weeks vs. 63 & 53, p=0.008) but this was restricted to Intermediate cytogenetics cases (Fig C “IntCyto” OS 49 & 55 weeks vs. 107& 79 p=0.01, RemDur 37 & 35 weeks vs. 89 & 53 , p = 0.005) that were FLT3 mutation ((Fig C “FLT3-WT” OS p=0.006, RemDur p0.007) and NPM1 mutation negative (Fig C “NPM1-WT”, OS p=0.006, RemDur p=0.001). Conclusions. Activation of EIF4EBP1, with or without RPS6 activation is prognostically adverse in AML, particularly in intermediate cytogenetic cases with wildtype FLT3 and NPM1. This is associated with increased proliferation. Therapy directed against EIF4EBP1 activity, e.g. that block it's phosphorylation, may have utility in the ~46% of cases of AML that demonstrate high levels of EIF4EBP1 phosphorylation, especially in FLT3/NPM1 wildtype cases. Many agents that inhibit signal transduction pathways are in clinical development, analyzing them for the ability to inhibition the activation of EIF4EBP1 might identify clinically useful molecules. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.


2010 ◽  
Vol 30 (8) ◽  
pp. 1958-1970 ◽  
Author(s):  
Adam Wallace ◽  
Megan E. Filbin ◽  
Bethany Veo ◽  
Craig McFarland ◽  
Janusz Stepinski ◽  
...  

ABSTRACT Eukaryotic mRNA translation begins with recruitment of the 40S ribosome complex to the mRNA 5′ end through the eIF4F initiation complex binding to the 5′ m7G-mRNA cap. Spliced leader (SL) RNA trans splicing adds a trimethylguanosine (TMG) cap and a sequence, the SL, to the 5′ end of mRNAs. Efficient translation of TMG-capped mRNAs in nematodes requires the SL sequence. Here we define a core set of nucleotides and a stem-loop within the 22-nucleotide nematode SL that stimulate translation of mRNAs with a TMG cap. The structure and core nucleotides are conserved in other nematode SLs and correspond to regions of SL1 required for early Caenorhabditis elegans development. These SL elements do not facilitate translation of m7G-capped RNAs in nematodes or TMG-capped mRNAs in mammalian or plant translation systems. Similar stem-loop structures in phylogenetically diverse SLs are predicted. We show that the nematode eukaryotic translation initiation factor 4E/G (eIF4E/G) complex enables efficient translation of the TMG-SL RNAs in diverse in vitro translation systems. TMG-capped mRNA translation is determined by eIF4E/G interaction with the cap and the SL RNA, although the SL does not increase the affinity of eIF4E/G for capped RNA. These results suggest that the mRNA 5′ untranslated region (UTR) can play a positive and novel role in translation initiation through interaction with the eIF4E/G complex in nematodes and raise the issue of whether eIF4E/G-RNA interactions play a role in the translation of other eukaryotic mRNAs.


Author(s):  
Wenqing Liu ◽  
Na Li ◽  
Mengfei Zhang ◽  
Ahmed H. Arisha ◽  
Jinlian Hua

: Eukaryotic translation initiation factor 2 subunit 3 and structural gene Y-linked (Eif2s3y) gene, the gene encoding eIF2γ protein, is located on the mouse Y chromosome short arm. The Eif2s3y gene is globally expressed in all tissues and plays an important role in regulating global and gene-specific mRNA translation initiation. During the process of protein translation initiation, Eif2s3x(its homolog) and Eif2s3y encoded eIF2γ perform similar functions. However, it has been noticed that Eif2s3y plays a crucial role in spermatogenesis, including spermatogonia mitosis, meiosis, and spermiogenesis of spermatids, which may account for infertility. In the period of spermatogenesis, the role of Eif2s3x and Eif2s3y are not equivalent. Importance of Eif2s3y has been observed in ESC and implicated in several aspects, including the pluripotency state and the proliferation rate. Here, we discuss the functional significance of Eif2s3y in mouse spermatogenesis and self-renewal of ESCs.


2000 ◽  
Vol 74 (15) ◽  
pp. 7064-7071 ◽  
Author(s):  
Patrice Vende ◽  
Maria Piron ◽  
Nathalie Castagné ◽  
Didier Poncet

ABSTRACT In contrast to the vast majority of cellular proteins, rotavirus proteins are translated from capped but nonpolyadenylated mRNAs. The viral nonstructural protein NSP3 specifically binds the 3′-end consensus sequence of viral mRNAs and interacts with the eukaryotic translation initiation factor eIF4G. Here we show that expression of NSP3 in mammalian cells allows the efficient translation of virus-like mRNA. A synergistic effect between the cap structure and the 3′ end of rotavirus mRNA was observed in NSP3-expressing cells. The enhancement of viral mRNA translation by NSP3 was also observed in a rabbit reticulocyte lysate translation system supplemented with recombinant NSP3. The use of NSP3 mutants indicates that its RNA- and eIF4G-binding domains are both required to enhance the translation of viral mRNA. The results reported here show that NSP3 forms a link between viral mRNA and the cellular translation machinery and hence is a functional analogue of cellular poly(A)-binding protein.


2020 ◽  
Vol 477 (10) ◽  
pp. 1939-1950 ◽  
Author(s):  
Zizheng Dong ◽  
Jianguo Liu ◽  
Jian-Ting Zhang

eIF3a is a putative subunit of the eukaryotic translation initiation factor 3 complex. Accumulating evidence suggests that eIF3a may have a translational regulatory function by suppressing translation of a subset of mRNAs while accelerating that of other mRNAs. Albeit the suppression of mRNA translation may derive from eIF3a binding to the 5′-UTRs of target mRNAs, how eIF3a may accelerate mRNA translation remains unknown. In this study, we show that eIF3a up-regulates translation of Chk1 but not Chk2 mRNA by interacting with HuR, which binds directly to the 3′-UTR of Chk1 mRNA. The interaction between eIF3a and HuR occurs at the 10-amino-acid repeat domain of eIF3a and the RNA recognition motif domain of HuR. This interaction may effectively circularize Chk1 mRNA to form an end-to-end complex that has recently been suggested to accelerate mRNA translation. Together with previous findings, we conclude that eIF3a may regulate mRNA translation by directly binding to the 5′-UTR to suppress or by interacting with RNA-binding proteins at 3′-UTRs to accelerate mRNA translation.


2019 ◽  
Author(s):  
Ansul Lokdarshi ◽  
Philip W. Morgan ◽  
Michelle Franks ◽  
Zoe Emert ◽  
Catherine Emanuel ◽  
...  

ABSTRACTRegulation of cytosolic mRNA translation is a key node for rapid adaptation to environmental stress conditions. In yeast and animals, phosphorylation of the α-subunit of eukaryotic translation initiation factor eIF2 is the most thoroughly characterized event in regulating global translation under stress. In plants, the GCN2 kinase (General Control Non-derepressible-2) is the only known kinase for eIF2α. GCN2 is activated under a variety of stresses including reactive oxygen species. Here we provide new evidence that the GCN2 kinase in Arabidopsis is also activated rapidly and in a light dependent manner by cold and salt treatments. These treatments alone did not repress global mRNA ribosome loading in a major way. The activation of GCN2 was attenuated by inhibitors of photosynthesis and antioxidants, suggesting that it is gated by the redox poise or the reactive oxygen status of the chloroplast. In keeping with these results, gcn2 mutant seedlings were more sensitive than wild type to both cold and salt in a root elongation assay. These data suggest that cold and salt stress may both affect the status of the cytosolic translation apparatus via the conserved GCN2-eIF2α module. The potential role of the GCN2 kinase pathway in the global repression of translation under abiotic stress will be discussed.


Sign in / Sign up

Export Citation Format

Share Document