scholarly journals The Properties of the Arithmetic Function as the Consecutive Sum of Digits in Natural Numbers

Author(s):  
Ramazanali Maleki Chorei

In this paper defines the consecutive sum of the digits of a natural number, so far as it becomes less than ten, as an arithmetic function called and then introduces some important properties of this function by proving a few theorems in a way that they can be used as a powerful tool in many cases. As an instance, by introducing a test called test, it has been shown that we are able to examine many algebraic equalities in the form of in which and are arithmetic functions and to easily study many of the algebraic and diophantine equations in the domain of whole numbers. The importance of test for algebraic equalities can be considered equivalent to dimensional equation in physics relations and formulas. Additionally, this arithmetic function can also be useful in factorizing the composite odd numbers.

2001 ◽  
Vol 163 ◽  
pp. 1-11 ◽  
Author(s):  
Tomio Kubota ◽  
Mariko Yoshida

Let n = p1p2 … pr be a product of r prime numbers which are not necessarily different. We define then an arithmetic function µm(n) bywhere m is a natural number. We further define the function L(s, µm) by the Dirichlet seriesand will show that L(s, µm), (m ≥ 3), has an infinitely many valued analytic continuation into the half plane Re s > ½.


Author(s):  
Øystein Linnebo

How are the natural numbers individuated? That is, what is our most basic way of singling out a natural number for reference in language or in thought? According to Frege and many of his followers, the natural numbers are cardinal numbers, individuated by the cardinalities of the collections that they number. Another answer regards the natural numbers as ordinal numbers, individuated by their positions in the natural number sequence. Some reasons to favor the second answer are presented. This answer is therefore developed in more detail, involving a form of abstraction on numerals. Based on this answer, a justification for the axioms of Dedekind–Peano arithmetic is developed.


2004 ◽  
Vol 89 (516) ◽  
pp. 403-408
Author(s):  
P. G. Brown

In many of the basic courses in Number Theory, Finite Mathematics and Cryptography we come across the so-called arithmetic functions such as ϕn), σ(n), τ(n), μ(n), etc, whose domain is the set of natural numbers. These functions are well known and evaluated through the prime factor decomposition of n. It is less well known that these functions possess inverses (with respect to Dirichlet multiplication) which have interesting properties and applications.


2015 ◽  
Vol 58 (3) ◽  
pp. 548-560
Author(s):  
Guangshi Lü ◽  
Ayyadurai Sankaranarayanan

AbstractLet Sk(Γ) be the space of holomorphic cusp forms of even integral weight k for the full modular group SL(z, ℤ). Let be the n-th normalized Fourier coefficients of three distinct holomorphic primitive cusp forms , and h(z) ∊ Sk3 (Γ), respectively. In this paper we study the cancellations of sums related to arithmetic functions, such as twisted by the arithmetic function λf(n).


2012 ◽  
Vol 22 (4-5) ◽  
pp. 614-704 ◽  
Author(s):  
NICOLAS POUILLARD ◽  
FRANÇOIS POTTIER

AbstractAtoms and de Bruijn indices are two well-known representation techniques for data structures that involve names and binders. However, using either technique, it is all too easy to make a programming error that causes one name to be used where another was intended. We propose an abstract interface to names and binders that rules out many of these errors. This interface is implemented as a library in Agda. It allows defining and manipulating term representations in nominal style and in de Bruijn style. The programmer is not forced to choose between these styles: on the contrary, the library allows using both styles in the same program, if desired. Whereas indexing the types of names and terms with a natural number is a well-known technique to better control the use of de Bruijn indices, we index types with worlds. Worlds are at the same time more precise and more abstract than natural numbers. Via logical relations and parametricity, we are able to demonstrate in what sense our library is safe, and to obtain theorems for free about world-polymorphic functions. For instance, we prove that a world-polymorphic term transformation function must commute with any renaming of the free variables. The proof is entirely carried out in Agda.


1984 ◽  
Vol 49 (3) ◽  
pp. 818-829 ◽  
Author(s):  
J. P. Jones ◽  
Y. V. Matijasevič

The purpose of the present paper is to give a new, simple proof of the theorem of M. Davis, H. Putnam and J. Robinson [1961], which states that every recursively enumerable relation A(a1, …, an) is exponential diophantine, i.e. can be represented in the formwhere a1 …, an, x1, …, xm range over natural numbers and R and S are functions built up from these variables and natural number constants by the operations of addition, A + B, multiplication, AB, and exponentiation, AB. We refer to the variables a1,…,an as parameters and the variables x1 …, xm as unknowns.Historically, the Davis, Putnam and Robinson theorem was one of the important steps in the eventual solution of Hilbert's tenth problem by the second author [1970], who proved that the exponential relation, a = bc, is diophantine, and hence that the right side of (1) can be replaced by a polynomial equation. But this part will not be reproved here. Readers wishing to read about the proof of that are directed to the papers of Y. Matijasevič [1971a], M. Davis [1973], Y. Matijasevič and J. Robinson [1975] or C. Smoryński [1972]. We concern ourselves here for the most part only with exponential diophantine equations until §5 where we mention a few consequences for the class NP of sets computable in nondeterministic polynomial time.


10.14311/1821 ◽  
2013 ◽  
Vol 53 (4) ◽  
Author(s):  
L'ubomíra Balková ◽  
Aranka Hrušková

In this paper, we will first summarize known results concerning continued fractions. Then we will limit our consideration to continued fractions of quadratic numbers. The second author describes periods and sometimes the precise form of continued fractions of ?N, where N is a natural number. In cases where we have been able to find such results in the literature, we recall the original authors, however many results seem to be new.


2013 ◽  
Vol 13 (4-5) ◽  
pp. 847-861 ◽  
Author(s):  
PAUL TARAU

AbstractWe describe a compact serialization algorithm mapping Prolog terms to natural numbers of bit-sizes proportional to the memory representation of the terms. The algorithm is a ‘no bit lost’ bijection, as it associates to each Prolog term a unique natural number and each natural number corresponds to a unique syntactically well-formed term.To avoid an exponential explosion resulting from bijections mapping term trees to natural numbers, we separate the symbol content and the syntactic skeleton of a term that we serialize compactly using a ranking algorithm for Catalan families.A novel algorithm for the generalized Cantor bijection between ${\mathbb{N}$ and ${\mathbb{N}$k is used in the process of assigning polynomially bounded Gödel numberings to various data objects involved in the translation.


2011 ◽  
Vol 07 (03) ◽  
pp. 579-591 ◽  
Author(s):  
PAUL POLLACK

For each natural number N, let R(N) denote the number of representations of N as a sum of two primes. Hardy and Littlewood proposed a plausible asymptotic formula for R(2N) and showed, under the assumption of the Riemann Hypothesis for Dirichlet L-functions, that the formula holds "on average" in a certain sense. From this they deduced (under ERH) that all but Oϵ(x1/2+ϵ) of the even natural numbers in [1, x] can be written as a sum of two primes. We generalize their results to the setting of polynomials over a finite field. Owing to Weil's Riemann Hypothesis, our results are unconditional.


Axioms ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 103 ◽  
Author(s):  
Urszula Wybraniec-Skardowska

The systems of arithmetic discussed in this work are non-elementary theories. In this paper, natural numbers are characterized axiomatically in two different ways. We begin by recalling the classical set P of axioms of Peano’s arithmetic of natural numbers proposed in 1889 (including such primitive notions as: set of natural numbers, zero, successor of natural number) and compare it with the set W of axioms of this arithmetic (including the primitive notions like: set of natural numbers and relation of inequality) proposed by Witold Wilkosz, a Polish logician, philosopher and mathematician, in 1932. The axioms W are those of ordered sets without largest element, in which every non-empty set has a least element, and every set bounded from above has a greatest element. We show that P and W are equivalent and also that the systems of arithmetic based on W or on P, are categorical and consistent. There follows a set of intuitive axioms PI of integers arithmetic, modelled on P and proposed by B. Iwanuś, as well as a set of axioms WI of this arithmetic, modelled on the W axioms, PI and WI being also equivalent, categorical and consistent. We also discuss the problem of independence of sets of axioms, which were dealt with earlier.


Sign in / Sign up

Export Citation Format

Share Document