scholarly journals Biomass Burning and Gas Flares create the extreme West African Aerosol Plume which perturbs the Hadley Circulation and thereby changes Europe’s winter climate

Author(s):  
Keith A. Potts

Europe’s winter climate has experienced three significant changes recently: increased UK flooding; Iberian drought; and warmer temperatures north of the Alps. The literature links all three to a persistent, significant increase in sea level pressure over the Mediterranean and Iberia which changes the atmospheric circulation system by: forcing cold fronts north away from Iberia; and creating a south westerly flow around the high-pressure region bringing warmer, moist air from the subtropical Atlantic to Europe which increases UK precipitation and European temperatures. Here I show, using modelled, reanalysis and measured data, that: the extreme, anthropogenic, West African aerosol Plume (WAP) which exists from late December to early April perturbs the northern, regional Hadley Circulation creating the high-pressure region; and that the WAP has only existed in its extreme form in recent decades as the major sources of the aerosols: biomass burning; and gas flaring have both increased significantly since 1950 due to: a four-fold increase in population (United Nations); and gas flaring rising from zero to 7.4 billion m3/annum (Global Gas Flaring Reduction Partnership). I also suggest that the WAP can be eliminated and Europe’s winter climate returned to its natural state after the crucial first step of recognising the cause of the changes is taken.

Author(s):  
Keith A. Potts

Three significant changes have occurred in the winter climate in Europe recently: increased UK flooding; Iberian drought; and warmer temperatures north of the Alps. The literature links all three to a persistent, significant increase in sea level pressure over Southern Europe, the Medi-terranean, Iberia and the Eastern Atlantic (SEMIEA) which changes the atmospheric circulation system: forcing cold fronts to the north away from Iberia; and creating a south westerly flow around the northern perimeter of the high-pressure region bringing warmer, moist air from the subtropical Atlantic to the UK and Europe which increases precipitation in the UK and raises the temperature in Europe. I use the Last Millennium Ensemble, MERRA-2 and Terra-NCEP data to demonstrate that the extreme, anthropogenic, West African aerosol Plume (WAP) which only exists from December to April perturbs the northern, regional Hadley Circulation creating the high pressure in the SEMIEA. I also show that the anthropogenic WAP has only existed in its extreme form in recent decades as the two major sources of the WAP aerosols: biomass burning; and gas flaring have both increased significantly since 1950 due to: a four-fold increase in population; and gas flaring rising from zero to 7.4 billion m3/annum and note that this time span coincides with the changes in the three elements of the winter climate of Europe. I also suggest that it may be possible to eliminate the WAP and return the winter climate of Europe to its natural state after the crucial first step of recognising the cause of the changes is taken.


Author(s):  
Keith A. Potts

Three significant changes have occurred in the winter climate in Europe recently: increased UK flooding; Iberian drought; and warmer temperatures north of the Alps. The literature links all three to a persistent, significant increase in sea level pressure over Southern Europe, the Mediterranean, Iberia and the Eastern Atlantic (SEMIEA) which changes the atmospheric circulation system: forcing cold fronts to the north away from Iberia; and creating a south westerly flow around the northern perimeter of the high-pressure region bringing warmer, moist air from the subtropical Atlantic to the UK and Europe which increases precipitation in the UK and raises the temperature in Europe. I use the Last Millennium Ensemble, MERRA-2 and Terra-NCEP data to demonstrate that the extreme, anthropogenic, West African aerosol Plume (WAP) which only exists from December to April perturbs the northern, regional Hadley Circulation creating the high pressure in the SEMIEA. I also show that the anthropogenic WAP has only existed in its extreme form in recent decades as the two major sources of the WAP aerosols: biomass burning; and gas flaring have both increased significantly since 1950 due to: a four-fold increase in population; and gas flaring rising from zero to 7.4 billion m3/annum and note that this time span coincides with the changes in the three elements of the winter climate of Europe. I also suggest that it may be possible to eliminate the WAP and return the winter climate of Europe to its natural state after the crucial first step of recognising the cause of the changes is taken.


Author(s):  
Will Lowry ◽  
Jihui Geng

Abstract A pressure vessel burst (PVB) is an explosion scenario commonly encountered at chemical processing and petroleum refining facilities. Existing methodologies are available to predict the blast loads resulting from a spherical or cylindrical PVB source, with the PVB source either at grade or at an elevation. In the case of an elevated PVB source, the resulting blast wave will reflect from the ground at an angle. This ground level reflection will result in the formation of a Mach stem at certain angles between the incident blast wave and ground, with the required angles dependent on the blast wave overpressure. The triple point associated with the Mach stem moves upwards as the Mach stem progresses forwards, which can create a region of high blast pressure. This paper focuses on the investigation of a methodology that can be used to determine the high-pressure region generated by the Mach stem, along with the associated blast pressure, as a function of the PVB source elevation and incident blast pressure.


2005 ◽  
Vol 127 (1) ◽  
pp. 51-60 ◽  
Author(s):  
A. Fe´lix-Quin˜onez ◽  
P. Ehret ◽  
J. L. Summers

A direct comparison between experimental and numerical results for the passage of an array of 3D flat-top, square shaped surface features through an EHL point contact is presented. Results for pure rolling conditions show that the features’ deformation in the high-pressure region is governed by their ability to entrap lubricant both underneath and in the grooves during their passage through the inlet zone. Film perturbations associated with each defect occur as locally enhanced regions of lubricant and film thickness micro-constrictions. Under sliding conditions the features sustain further deformations as they traverse the high-pressure conjunction and meet the highly viscous lubricant entrapped in the grooves, which moves at a different velocity. Lubricant is also seen to accumulate just in front or behind the features depending on the slide-to-roll ratio. Overall, the results highlight the importance of understanding the effects of the defects structure and the lubricant rheology on the film thickness to unravel the effects of real roughness patterns.


1973 ◽  
Vol 51 (14) ◽  
pp. 2292-2296 ◽  
Author(s):  
Michael T. H. Liu ◽  
Leon F. Loucks ◽  
Robert C. Michaelson

The thermal decomposition of trifluoroacetaldehyde has been studied over the 460–520 °C temperature range, and at pressures from 4 to 400 mm Hg. The experimental rate equation in the high-pressure region is of the form: Rate = k[CF3CHO]3/2 where[Formula: see text]The results are consistent with a mechanism initiated by a first order process and terminated by a second order recombination of two CF3 free radicals. At lower pressures (40 mm Hg), the ratio of kinit/kterm is pressure dependent and the overall order increases. The effects of added inert gas confirm this pressure dependence.


2021 ◽  
Author(s):  
Lianshan Lin ◽  
Drew Winder

Abstract A pulsed neutron spallation target is subjected to very short but intense loads from repeated proton pulses. Approximately 60% of the energy from each proton pulse is deposited into the mercury target material and the stainless-steel target structure, leading to a high-pressure region in both the stationary target structure and the flowing mercury. The high-pressure region propagates and leads to fluid-structure interaction. The resultant loading on the target structure containing liquid mercury is difficult to predict, although various simulation approaches and material models for the mercury have been tried. To date, the best match of simulation to experimental data is obtained by using an equation of state (EOS) material model with a specified tensile cutoff pressure, which simulates the cavitation threshold. The inclusion of a threshold to represent cavitation is key to the successful predictions of stress waves triggered by the high-energy pulse striking the mercury and vessel. However, recent measurements of target structure strain show that significant discrepancies remain between the measured and simulated strain values in the EOS mercury model. These differences grow when noncondensable helium gas is intentionally injected into the flowing mercury to reduce the loading on the structure. An EOS-based proportional–integral–derivative (PID) mercury model has been proposed to reduce the gap between the measured and simulated vessel strain responses for targets with gas injection. The conceptual and numerical description and initial investigation of the PID model are presented in previous work. Further studies of this PID model — including the sensitivity of the structure’s strain response to model parameters (the tensile cutoff, PID parameters Kp, Ki, and Kd) — are reported in this article. Results show the strain response is more sensitive to changes in the tensile cutoff value than to changes in the model parameters Kp, Ki, and Kd. These results will aid in future work where the model parameters will be optimized to match simulation data to strain measurements.


Sign in / Sign up

Export Citation Format

Share Document