scholarly journals Optimization of Intrusion Detection Systems Determined by Ameliorated HNADAM-SGD Algorithm

Author(s):  
Shyla Shyla ◽  
Vishal Bhatnagar ◽  
Vikram Bali ◽  
Shivani Bali

A single Information security is of pivotal concern for consistently streaming information over the widespread internetwork. The bottleneck flow of incoming and outgoing data traffic introduces the issue of malicious activities taken place by intruders, hackers and attackers in the form of authenticity desecration, gridlocking data traffic, vandalizing data and crashing the established network. The issue of emerging suspicious activities is managed by the domain of Intrusion Detection Systems (IDS). The IDS consistently monitors the network for identifica-tion of suspicious activities and generates alarm and indication in presence of malicious threats and worms. The performance of IDS is improved by using different signature based machine learning algorithms. In this paper, the performance of IDS model is determined using hybridization of nestrov-accelerated adaptive moment estimation –stochastic gradient descent (HNADAM-SDG) algorithm. The performance of the algorithm is compared with other classi-fication algorithms as logistic regression, ridge classifier and ensemble algorithm by adapting feature selection and optimization techniques

Information ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 315
Author(s):  
Nathan Martindale ◽  
Muhammad Ismail ◽  
Douglas A. Talbert

As new cyberattacks are launched against systems and networks on a daily basis, the ability for network intrusion detection systems to operate efficiently in the big data era has become critically important, particularly as more low-power Internet-of-Things (IoT) devices enter the market. This has motivated research in applying machine learning algorithms that can operate on streams of data, trained online or “live” on only a small amount of data kept in memory at a time, as opposed to the more classical approaches that are trained solely offline on all of the data at once. In this context, one important concept from machine learning for improving detection performance is the idea of “ensembles”, where a collection of machine learning algorithms are combined to compensate for their individual limitations and produce an overall superior algorithm. Unfortunately, existing research lacks proper performance comparison between homogeneous and heterogeneous online ensembles. Hence, this paper investigates several homogeneous and heterogeneous ensembles, proposes three novel online heterogeneous ensembles for intrusion detection, and compares their performance accuracy, run-time complexity, and response to concept drifts. Out of the proposed novel online ensembles, the heterogeneous ensemble consisting of an adaptive random forest of Hoeffding Trees combined with a Hoeffding Adaptive Tree performed the best, by dealing with concept drift in the most effective way. While this scheme is less accurate than a larger size adaptive random forest, it offered a marginally better run-time, which is beneficial for online training.


2020 ◽  
Vol 3 (2) ◽  
pp. 196-206
Author(s):  
Mausumi Das Nath ◽  
◽  
Tapalina Bhattasali

Due to the enormous usage of the Internet, users share resources and exchange voluminous amounts of data. This increases the high risk of data theft and other types of attacks. Network security plays a vital role in protecting the electronic exchange of data and attempts to avoid disruption concerning finances or disrupted services due to the unknown proliferations in the network. Many Intrusion Detection Systems (IDS) are commonly used to detect such unknown attacks and unauthorized access in a network. Many approaches have been put forward by the researchers which showed satisfactory results in intrusion detection systems significantly which ranged from various traditional approaches to Artificial Intelligence (AI) based approaches.AI based techniques have gained an edge over other statistical techniques in the research community due to its enormous benefits. Procedures can be designed to display behavior learned from previous experiences. Machine learning algorithms are used to analyze the abnormal instances in a particular network. Supervised learning is essential in terms of training and analyzing the abnormal behavior in a network. In this paper, we propose a model of Naïve Bayes and SVM (Support Vector Machine) to detect anomalies and an ensemble approach to solve the weaknesses and to remove the poor detection results


2021 ◽  
Vol 2021 ◽  
pp. 1-28
Author(s):  
Khalid M. Al-Gethami ◽  
Mousa T. Al-Akhras ◽  
Mohammed Alawairdhi

Optimizing the detection of intrusions is becoming more crucial due to the continuously rising rates and ferocity of cyber threats and attacks. One of the popular methods to optimize the accuracy of intrusion detection systems (IDSs) is by employing machine learning (ML) techniques. However, there are many factors that affect the accuracy of the ML-based IDSs. One of these factors is noise, which can be in the form of mislabelled instances, outliers, or extreme values. Determining the extent effect of noise helps to design and build more robust ML-based IDSs. This paper empirically examines the extent effect of noise on the accuracy of the ML-based IDSs by conducting a wide set of different experiments. The used ML algorithms are decision tree (DT), random forest (RF), support vector machine (SVM), artificial neural networks (ANNs), and Naïve Bayes (NB). In addition, the experiments are conducted on two widely used intrusion datasets, which are NSL-KDD and UNSW-NB15. Moreover, the paper also investigates the use of these ML algorithms as base classifiers with two ensembles of classifiers learning methods, which are bagging and boosting. The detailed results and findings are illustrated and discussed in this paper.


2019 ◽  
Vol 20 (1) ◽  
pp. 113-160 ◽  
Author(s):  
Asif Iqbal Hajamydeen ◽  
Nur Izura Udzir

Observing network traffic flow for anomalies is a common method in Intrusion Detection. More effort has been taken in utilizing the data mining and machine learning algorithms to construct anomaly based intrusion detection systems, but the dependency on the learned models that were built based on earlier network behaviour still exists, which restricts those methods in detecting new or unknown intrusions. Consequently, this investigation proposes a structure to identify an extensive variety of abnormalities by analysing heterogeneous logs, without utilizing either a prepared model of system transactions or the attributes of anomalies. To accomplish this, a current segment (clustering) has been used and a few new parts (filtering, aggregating and feature analysis) have been presented. Several logs from multiple sources are used as input and this data are processed by all the modules of the framework. As each segment is instrumented for a particular undertaking towards a definitive objective, the commitment of each segment towards abnormality recognition is estimated with various execution measurements. Ultimately, the framework is able to detect a broad range of intrusions exist in the logs without using either the attack knowledge or the traffic behavioural models. The result achieved shows the direction or pathway to design anomaly detectors that can utilize raw traffic logs collected from heterogeneous sources on the network monitored and correlate the events across the logs to detect intrusions.


Sign in / Sign up

Export Citation Format

Share Document