scholarly journals Symmetries of Thirring Models on 3D Lattices

Author(s):  
Andreas Wilhelm Wipf ◽  
Julian Johannes Lenz

We review some recent developments about strongly interacting relativistic Fermi theories in three spacetime dimensions. These models realize the asymptotic safety scenario and are used to describe the low-energy properties of Dirac materials in condensed matter physics. We begin with a general discussion of the symmetries of multi-flavor Fermi systems in arbitrary dimensions. Then we review known results about the critical flavor number $N_\mathrm{crit}$ of Thirring models in three dimensions. Only models with flavor number below $N_\mathrm{crit}$ show a phase transition from a symmetry-broken strong-coupling phase to a symmetric weak-coupling phase. Recent simulations with chiral fermions show that $N_\mathrm{crit}$ is smaller than previously extracted with various non-perturbative methods. Our simulations with chiral SLAC fermions reveal that for four-component flavors $N_\mathrm{crit}=0.80(4)$. This means that all reducible Thirring models with $\Nr=1,2,3,\dots$ show no phase transition with order parameter. Instead we discover footprints of phase transitions without order parameter. These new transitions are probably smooth and could be used to relate the lattice Thirring models to Thirring models in the continuum. For a single irreducible flavor, we provide previously unpublished values for the critical couplings and critical exponents.

2002 ◽  
pp. 1-12 ◽  
Author(s):  
Gérard Maugin

The paper outlines recent developments and prospects in the application of the continuum mechanics expressed intrinsically on the material manifold itself. This includes applications to materially inhomogeneous materials physical effects which, in this vision, manifest themselves as quasi-in homogeneities, and the notion of thermo dynamical driving force of the dissipative progress of singular point sets on the material manifold with special emphasis on fracture, shock waves and phase-transition fronts. .


2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Andreas Ekstedt ◽  
Johan Löfgren

Abstract The electroweak phase transition broke the electroweak symmetry. Perturbative methods used to calculate observables related to this phase transition suffer from severe problems such as gauge dependence, infrared divergences, and a breakdown of perturbation theory. In this paper we develop robust perturbative tools for dealing with phase transitions. We argue that gauge and infrared problems are absent in a consistent power-counting. We calculate the finite temperature effective potential to two loops for general gauge-fixing parameters in a generic model. We demonstrate gauge invariance, and perform numerical calculations for the Standard Model in Fermi gauge.


2009 ◽  
Vol 87 (10) ◽  
pp. 1425-1435 ◽  
Author(s):  
Taunia L. L. Closson ◽  
Marc R. Roussel

When the anisotropy of a harmonic ion trap is increased, the ions eventually collapse into a two-dimensional structure consisting of concentric shells of ions. This collapse generally behaves like a second-order phase transition. A graph of the critical value of the anisotropy parameter vs. the number of ions displays substructure closely related to the inner-shell configurations of the clusters. The critical exponent for the order parameter of this phase transition (maximum extent in the z direction) was found computationally to have the value β = 1/2. A second critical exponent related to displacements perpendicular to the z axis was found to have the value δ = 1. Using these estimates of the critical exponents, we derive an equation that relates the amplitudes of the displacements of the ions parallel to the x–y plane to the amplitudes along the z axis during the flattening process.


2012 ◽  
Vol 54 (6) ◽  
pp. 1212-1219
Author(s):  
Yu. F. Markov ◽  
E. M. Roginskii ◽  
A. S. Yurkov

2014 ◽  
Vol 47 (2) ◽  
pp. 701-711 ◽  
Author(s):  
Oxana V. Magdysyuk ◽  
Melanie Müller ◽  
Robert E. Dinnebier ◽  
Christian Lipp ◽  
Thomas Schleid

The high-temperature phase transition of LuF[SeO3] has been characterized by time-resolved high-resolution synchrotron powder diffraction. On heating, a second-order structural phase transition was found at 393 K, while on cooling the same phase transition occurs at 371 K, showing a large hysteresis typical for a first-order phase transition. Detailed analysis using sequential and parametric whole powder pattern fitting revealed that the coupling between the strain and the displacive order parameter determines the behaviour of the material during the phase transition. Different possible coupling mechanisms have been evaluated and the most probable rationalized.


Sign in / Sign up

Export Citation Format

Share Document