scholarly journals DIAGNOSA KERUSAKAN BANTALAN BOLA MENGGUNAKAN METODE SUPPORT VECTOR MACHINE

2019 ◽  
Vol 18 (1) ◽  
Author(s):  
Muhammad Fathurrohman ◽  
R. Lulus Lambang G. H ◽  
Didik Djoko Susilo

<p><em>Bearings are the critical part of any rotating machine. The catastrophic failure of the bearing can lead to fatal and harmful to the operation of the machine. Therefore, predictive maintenance based on condition monitoring of bearing is very important. The objective of this research is to apply Support Vector Machine (SVM) method for fault diagnosis of the ball bearing. The research was carried out at the bearing test rig. Four types of ball bearing condition, such as normal, inner race defect, ball defect, and outer race defect were measured of the vibration signals using data acquisition with a sampling frequency of 20 kHz at the constant speed of 1400 RPM. Various features were extracted from vibration signals in time domain, such as RMS, variance, standard deviation, crest factor, shape factor, skewness, kurtosis, log energy entropy and sure entropy. PCA transformation was employed to reduce the dimension of feature extracted data. SVM classification problems were solved using MATLAB 2016a. The results showed that the application of RBF kernel function with the C parameter =1 was the best configuration. The training model accuracy was 98.93% and the testing accuracy of SVM was 97.5%. Finally, the research results show that the SVM classification method can be used to diagnose the fault condition of the ball bearing.</em><em>.</em></p>

2021 ◽  
Vol 5 (2) ◽  
pp. 475
Author(s):  
Ade Clinton Sitepu ◽  
Wanayumini Wanayumini ◽  
Zakarias Situmorang

Cyberbullying is the same as bullying but it is done through media technology. Bullying has often occurred along with the development of social media technology in society. Some technique are needed to filter out bully comments because it will indirectly affect the psychological condition of the reader, morover it is aimed at the person concerned. By using data mining techniques, the system is expected to be able to classify information circulating in the community. This research uses the Support Vector Machine (SVM) classification because the algorithm is good at performing the classification process. Research using about 1000 dataset comments. Data are grouped manually first into the labels "bully" and "not bully" then the data divide into training data and test data. To test the system capability, data is analyzed using confusion matrix. The results showed that the SVM Algorithm was able to classify with an level of accuracy 87.75%, 89% precision and 91% Recal. The SVM algorithm is able to formulate training data with level of accuracy 98.3%


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 27789-27801 ◽  
Author(s):  
Hongxin Xue ◽  
Yanping Bai ◽  
Hongping Hu ◽  
Ting Xu ◽  
Haijian Liang

2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
HungLinh Ao ◽  
Junsheng Cheng ◽  
Kenli Li ◽  
Tung Khac Truong

This study investigates a novel method for roller bearing fault diagnosis based on local characteristic-scale decomposition (LCD) energy entropy, together with a support vector machine designed using an Artificial Chemical Reaction Optimisation Algorithm, referred to as an ACROA-SVM. First, the original acceleration vibration signals are decomposed into intrinsic scale components (ISCs). Second, the concept of LCD energy entropy is introduced. Third, the energy features extracted from a number of ISCs that contain the most dominant fault information serve as input vectors for the support vector machine classifier. Finally, the ACROA-SVM classifier is proposed to recognize the faulty roller bearing pattern. The analysis of roller bearing signals with inner-race and outer-race faults shows that the diagnostic approach based on the ACROA-SVM and using LCD to extract the energy levels of the various frequency bands as features can identify roller bearing fault patterns accurately and effectively. The proposed method is superior to approaches based on Empirical Mode Decomposition method and requires less time.


2021 ◽  
Vol 40 (1) ◽  
pp. 1481-1494
Author(s):  
Geng Deng ◽  
Yaoguo Xie ◽  
Xindong Wang ◽  
Qiang Fu

Many classification problems contain shape information from input features, such as monotonic, convex, and concave. In this research, we propose a new classifier, called Shape-Restricted Support Vector Machine (SR-SVM), which takes the component-wise shape information to enhance classification accuracy. There exists vast research literature on monotonic classification covering monotonic or ordinal shapes. Our proposed classifier extends to handle convex and concave types of features, and combinations of these types. While standard SVM uses linear separating hyperplanes, our novel SR-SVM essentially constructs non-parametric and nonlinear separating planes subject to component-wise shape restrictions. We formulate SR-SVM classifier as a convex optimization problem and solve it using an active-set algorithm. The approach applies basis function expansions on the input and effectively utilizes the standard SVM solver. We illustrate our methodology using simulation and real world examples, and show that SR-SVM improves the classification performance with additional shape information of input.


2020 ◽  
Vol 14 ◽  
pp. 37-42
Author(s):  
Artur Całuch ◽  
Adam Cieślikowski ◽  
Małgorzata Plechawska-Wójcik

This article presents the process of adapting support vector machine model’s parameters used for studying the effect of traffic light cycle length parameter’s value on traffic quality. The survey is carried out using data collected during running simulations in author’s traffic simulator. The article shows results of searching for optimum traffic light cycle length parameter’s value.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Andronicus A. Akinyelu ◽  
Aderemi O. Adewumi

Support vector machine (SVM) is one of the top picks in pattern recognition and classification related tasks. It has been used successfully to classify linearly separable and nonlinearly separable data with high accuracy. However, in terms of classification speed, SVMs are outperformed by many machine learning algorithms, especially, when massive datasets are involved. SVM classification speed scales linearly with number of support vectors, and support vectors increase with increase in dataset size. Hence, SVM classification speed can be enormously reduced if it is trained on a reduced dataset. Instance selection techniques are one of the most effective techniques suitable for minimizing SVM training time. In this study, two instance selection techniques suitable for identifying relevant training instances are proposed. The techniques are evaluated on a dataset containing 4000 emails and results obtained compared to other existing techniques. Result reveals excellent improvement in SVM classification speed.


Sign in / Sign up

Export Citation Format

Share Document