scholarly journals Enzyme-Free Glucose Sensor Based on Micro-nano Dualporous Gold-Modified Screen-Printed Carbon Electrode

Author(s):  
Nguyen Xuan Viet ◽  
2019 ◽  
Vol 297 ◽  
pp. 126763
Author(s):  
XinXin He ◽  
Shwu Jen Chang ◽  
Kalpana Settu ◽  
Ching-Jung Chen ◽  
Jen-Tsai Liu

2016 ◽  
Vol 12 (1) ◽  
Author(s):  
Intan Frina Utamiyanti

<p>The development of material-based glucose sensor SiO<sub>2</sub>-CuO using Screen Printed Carbon Electrode (SPCE) had been done. Three types of materials were used to detect glucose, i.e Multi Wall Carbon Nanotube (MWCNT)-SiO2-CuO, SiO2-CuO (A) dan SiO2-CuO (B). The differences composition of SiO<sub>2</sub>-CuO(A) and SiO<sub>2</sub>-CuO(B) occurred during the addition of NaOH in synthesis process of SiO2-CuO (B). The prepared materials were analyzed by Scanning Electron Microscopy (SEM), cyclic voltammetry method and chrono-amperometry. Cyclic voltammetry analysis was conducted at a potential range of -1.0 - 1.5 V with Ag/AgCl as reference electrode. The scan rate was 100 mV/sec and the potential was varied at (-0.6), (-0.5) and (-0.4) V, in which the duration of each analysis was 5 second. Based on the result of analysis, whether by SEM, cyclic voltammetry and chrono-amperometry, the SiO<sub>2</sub>-CuO (B) was found to be the best material for detection of glucose.</p>


2016 ◽  
Vol 12 (1) ◽  
pp. 50
Author(s):  
Intan Frina Utamiyanti ◽  
Barlah Rumhayati ◽  
Ani Mulyasuryani

The development of material-based glucose sensor SiO<sub>2</sub>-CuO using Screen Printed Carbon Electrode (SPCE) had been done. Three types of materials were used to detect glucose, i.e Multi Wall Carbon Nanotube (MWCNT)-SiO2-CuO, SiO2-CuO (A) dan SiO2-CuO (B). The differences composition of SiO<sub>2</sub>-CuO(A) and SiO<sub>2</sub>-CuO(B) occurred during the addition of NaOH in synthesis process of SiO2-CuO (B). The prepared materials were analyzed by Scanning Electron Microscopy (SEM), cyclic voltammetry method and chrono-amperometry. Cyclic voltammetry analysis was conducted at a potential range of -1.0 - 1.5 V with Ag/AgCl as reference electrode. The scan rate was 100 mV/sec and the potential was varied at (-0.6), (-0.5) and (-0.4) V, in which the duration of each analysis was 5 second. Based on the result of analysis, whether by SEM, cyclic voltammetry and chrono-amperometry, the SiO<sub>2</sub>-CuO (B) was found to be the best material for detection of glucose.


2015 ◽  
Vol 28 (3) ◽  
pp. 462-468 ◽  
Author(s):  
Tipawan Rungsawang ◽  
Eakkasit Punrat ◽  
Jaclyn Adkins ◽  
Charles Henry ◽  
Orawon Chailapakul

Sensors ◽  
2019 ◽  
Vol 19 (7) ◽  
pp. 1686 ◽  
Author(s):  
Ricardo Adriano Dorledo de Faria ◽  
Hassan Iden ◽  
Luiz Guilherme Dias Heneine ◽  
Tulio Matencio ◽  
Younès Messaddeq

A highly sensitive glucose sensor was prepared by a one-step method using 3-aminophenyl boronic acid as a unit of recognition and a screen-printed carbon electrode (SPCE) as an electrochemical transducer. Scanning Electron Microscopy confirmed the success of the functionalization of the SPCE due to the presence of clusters of boronic acid distributed on the carbon surface. In agreement with the Electrochemical Impedance Spectroscopy (EIS) tests performed before and after the functionalization, Cyclic Voltammetry results indicated that the electroactivity of the electrode decreased 37.9% owing to the presence of the poly phenylboronic acid on the electrode surface. EIS revealed that the sensor was capable to selectively detect glucose at a broad range of concentrations (limit of detection of 8.53 × 10−9 M), not recognizing fructose and sucrose. The device presented a stable impedimetric response when immediately prepared but suffered the influence of the storage time and some interfering species (dopamine, NaCl and animal serum). The response time at optimized conditions was estimated to be equal to 4.0 ± 0.6 s.


2016 ◽  
Vol 12 (1) ◽  
pp. 50
Author(s):  
Intan Frina Utamiyanti ◽  
Barlah Rumhayati ◽  
Ani Mulyasuryani

The development of material-based glucose sensor SiO<sub>2</sub>-CuO using Screen Printed Carbon Electrode (SPCE) had been done. Three types of materials were used to detect glucose, i.e Multi Wall Carbon Nanotube (MWCNT)-SiO2-CuO, SiO2-CuO (A) dan SiO2-CuO (B). The differences composition of SiO<sub>2</sub>-CuO(A) and SiO<sub>2</sub>-CuO(B) occurred during the addition of NaOH in synthesis process of SiO2-CuO (B). The prepared materials were analyzed by Scanning Electron Microscopy (SEM), cyclic voltammetry method and chrono-amperometry. Cyclic voltammetry analysis was conducted at a potential range of -1.0 - 1.5 V with Ag/AgCl as reference electrode. The scan rate was 100 mV/sec and the potential was varied at (-0.6), (-0.5) and (-0.4) V, in which the duration of each analysis was 5 second. Based on the result of analysis, whether by SEM, cyclic voltammetry and chrono-amperometry, the SiO<sub>2</sub>-CuO (B) was found to be the best material for detection of glucose.


Sign in / Sign up

Export Citation Format

Share Document