Artificial Neural Networks for Tool Wear Prediction Based on Sensor Fusion Monitoring of CFRP/CFRP Stack Drilling

2018 ◽  
Vol 12 (3) ◽  
pp. 275-281 ◽  
Author(s):  
Alessandra Caggiano ◽  
Luigi Nele ◽  
◽  
◽  

An intelligent sensor monitoring procedure was implemented to monitor the drilling of carbon fiber reinforced plastic (CFRP)/CFRP stacks used in the assembly of aircraft fuselage panels; the signals from these sensors were then used to develop an artificial neural network-based cognitive paradigm to predict tool wear, which would allow on-line decision making regarding tool replacement. A multiple sensor system, capable of acquiring signals relative to thrust force, torque, and acoustic emission RMS, was employed during experimental drilling tests, under different rotational speed and feed conditions. Advanced sensor signal processing techniques, including signal conditioning and segmentation, as well as statistical feature extraction and data fusion, were implemented on the acquired signals. Selected statistical features extracted from the multiple sensor signals in the time domain were combined via sensor fusion techniques to construct sensor fusion pattern vectors. These were then fed to artificial neural networks for pattern recognition, with the goal of finding correlations which would allow the prediction of the corresponding tool wear. The tool wear prediction performed by the artificial neural network can be utilized to support decision making at the appropriate time for worn tool replacement, which is extremely useful for drilling automation, as well as for estimating the quality of the drilled holes.

2022 ◽  
Author(s):  
Ankan Bhaumik ◽  
Sankar Kumar Roy

Abstract Introducing neuro -fuzzy concept in decision making problems, makes a new way in artificial intelligence and expert systems. Sometimes, neural networks are used to optimize certain performances. In general, knowledge acquisition becomes difficult when problem's variables, constraints, environment, decision maker's attitude and complex behavior are encountered with. A sense of fuzziness prevails in these situations; sometimes numerically and sometimes linguistically. Neural networks (or neural nets) help to overcome this problem. Neural networks are explicitly and implicitly hyped to draw out fuzzy rules from numerical information and linguistic information. Logic-gate and switching circuit mobilize the fuzzy data in crisp environment and can be used in artificial neural network, also. Game theory has a tremendous scope in decision making; and consequently decision makers' hesitant characters play an important role in it. In this paper, a game situation is clarified under artificial neural network through logic-gate switching circuit in hesitant fuzzy environment with a suitable example; and this concept can be applied in future for real-life situations.


2003 ◽  
Vol 1855 (1) ◽  
pp. 151-159 ◽  
Author(s):  
Arturo González ◽  
A. Thomas Papagiannakis ◽  
Eugene J. O’Brien

Weigh-in-motion (WIM) accuracy in measuring static axle loads is affected by vehicle dynamics and noise. Neural networks can identify underlying relationships, such as the spatial repeatability in axle dynamics, and can efficiently remove noise. Furthermore, they can adapt to changing circumstances (e.g., traffic characteristics, road profile, or sensor failure), unlike conventional WIM calibration algorithms. The paper performance of a multilayer feed-forward artificial neural network algorithm applied to a multiple-sensor WIM is analyzed. Numerical simulations of the axle forces applied on a smooth road profile are used to train, validate, and test the artificial neural network algorithm. This dynamic axle load variation is predicted with the vehicle simulation model VESYM. The mechanical parameters of the truck models and their speeds are randomly varied over a range established from real traffic measurements. Once the theoretical WIM data are obtained at the sensor locations, the measurements are artificially corrupted with noise up to the typical level of WIM accuracy. Details are given on the process of the neural network design, the size of the training sample, and the length of the training period. The artificial neural networks approach resulted in higher accuracy than the traditional average-based calibration method, especially at high noise levels. As a result, it shows promise for estimating static axle loads from multiple WIM measurements.


Author(s):  
I. Sh. Didmanidze ◽  
G. A. Kakhiani ◽  
D. Z. Didmanidze

The methodology of neural networks is even more often applied in tasks of management and decision-making, including in the sphere of trade and finance. The basis of neural networks is made by nonlinear adaptive systems which proved the efficiency at the solution of problems of forecasting.


Sensors ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 47
Author(s):  
Vasyl Teslyuk ◽  
Artem Kazarian ◽  
Natalia Kryvinska ◽  
Ivan Tsmots

In the process of the “smart” house systems work, there is a need to process fuzzy input data. The models based on the artificial neural networks are used to process fuzzy input data from the sensors. However, each artificial neural network has a certain advantage and, with a different accuracy, allows one to process different types of data and generate control signals. To solve this problem, a method of choosing the optimal type of artificial neural network has been proposed. It is based on solving an optimization problem, where the optimization criterion is an error of a certain type of artificial neural network determined to control the corresponding subsystem of a “smart” house. In the process of learning different types of artificial neural networks, the same historical input data are used. The research presents the dependencies between the types of neural networks, the number of inner layers of the artificial neural network, the number of neurons on each inner layer, the error of the settings parameters calculation of the relative expected results.


2016 ◽  
Vol 38 (2) ◽  
pp. 37-46 ◽  
Author(s):  
Mateusz Kaczmarek ◽  
Agnieszka Szymańska

Abstract Nonlinear structural mechanics should be taken into account in the practical design of reinforced concrete structures. Cracking is one of the major sources of nonlinearity. Description of deflection of reinforced concrete elements is a computational problem, mainly because of the difficulties in modelling the nonlinear stress-strain relationship of concrete and steel. In design practise, in accordance with technical rules (e.g., Eurocode 2), a simplified approach for reinforced concrete is used, but the results of simplified calculations differ from the results of experimental studies. Artificial neural network is a versatile modelling tool capable of making predictions of values that are difficult to obtain in numerical analysis. This paper describes the creation and operation of a neural network for making predictions of deflections of reinforced concrete beams at different load levels. In order to obtain a database of results, that is necessary for training and testing the neural network, a research on measurement of deflections in reinforced concrete beams was conducted by the authors in the Certified Research Laboratory of the Building Engineering Institute at Wrocław University of Science and Technology. The use of artificial neural networks is an innovation and an alternative to traditional methods of solving the problem of calculating the deflections of reinforced concrete elements. The results show the effectiveness of using artificial neural network for predicting the deflection of reinforced concrete beams, compared with the results of calculations conducted in accordance with Eurocode 2. The neural network model presented in this paper can acquire new data and be used for further analysis, with availability of more research results.


Sign in / Sign up

Export Citation Format

Share Document