Trajectory Planning of Mobile Robots Using DNA Computing

Author(s):  
Kazuo Kiguchi ◽  
◽  
Keigo Watanabe ◽  
Toshio Fukuda ◽  

DNA computers are attracting increasing attention as next-generation replacements for conventional electronic computers. Computation is realized using the chemical reaction of DNA. This paper presents optimal trajectory planning for mobile robots using DNA computing. The working area of a mobile robot is divided into many sections and the shortest trajectory avoiding obstacles in the work area is calculated by DNA computing. The location of obstacles is known in advance. In DNA computing, Watson-Crick pairing is used to find this trajectory. DNA sequences representing locations of obstacles are removed in this process. The shortest DNA molecule that begins with the start section and terminates with the goal section represents the shortest trajectory avoiding obstacles in the robot’s work area. The proposed algorithm is especially effective with a DNA molecular computer.

2020 ◽  
Vol 53 (2) ◽  
pp. 9670-9675
Author(s):  
Inderjeet Singh ◽  
Manarshhjot Singh ◽  
Ismail Bensekrane ◽  
Othman Lakhal ◽  
Rochdi Merzouki

Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 335
Author(s):  
Xiaolong Zhang ◽  
Yu Huang ◽  
Youmin Rong ◽  
Gen Li ◽  
Hui Wang ◽  
...  

With the rapid development of robotics, wheeled mobile robots are widely used in smart factories to perform navigation tasks. In this paper, an optimal trajectory planning method based on an improved dolphin swarm algorithm is proposed to balance localization uncertainty and energy efficiency, such that a minimum total cost trajectory is obtained for wheeled mobile robots. Since environmental information has different effects on the robot localization process at different positions, a novel localizability measure method based on the likelihood function is presented to explicitly quantify the localization ability of the robot over a prior map. To generate the robot trajectory, we incorporate localizability and energy efficiency criteria into the parameterized trajectory as the cost function. In terms of trajectory optimization issues, an improved dolphin swarm algorithm is then proposed to generate better localization performance and more energy efficiency trajectories. It utilizes the proposed adaptive step strategy and learning strategy to minimize the cost function during the robot motions. Simulations are carried out in various autonomous navigation scenarios to validate the efficiency of the proposed trajectory planning method. Experiments are performed on the prototype “Forbot” four-wheel independently driven-steered mobile robot; the results demonstrate that the proposed method effectively improves energy efficiency while reducing localization errors along the generated trajectory.


Sign in / Sign up

Export Citation Format

Share Document