scholarly journals Optimal Trajectory Planning for Wheeled Mobile Robots under Localization Uncertainty and Energy Efficiency Constraints

Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 335
Author(s):  
Xiaolong Zhang ◽  
Yu Huang ◽  
Youmin Rong ◽  
Gen Li ◽  
Hui Wang ◽  
...  

With the rapid development of robotics, wheeled mobile robots are widely used in smart factories to perform navigation tasks. In this paper, an optimal trajectory planning method based on an improved dolphin swarm algorithm is proposed to balance localization uncertainty and energy efficiency, such that a minimum total cost trajectory is obtained for wheeled mobile robots. Since environmental information has different effects on the robot localization process at different positions, a novel localizability measure method based on the likelihood function is presented to explicitly quantify the localization ability of the robot over a prior map. To generate the robot trajectory, we incorporate localizability and energy efficiency criteria into the parameterized trajectory as the cost function. In terms of trajectory optimization issues, an improved dolphin swarm algorithm is then proposed to generate better localization performance and more energy efficiency trajectories. It utilizes the proposed adaptive step strategy and learning strategy to minimize the cost function during the robot motions. Simulations are carried out in various autonomous navigation scenarios to validate the efficiency of the proposed trajectory planning method. Experiments are performed on the prototype “Forbot” four-wheel independently driven-steered mobile robot; the results demonstrate that the proposed method effectively improves energy efficiency while reducing localization errors along the generated trajectory.

2020 ◽  
Vol 53 (2) ◽  
pp. 9670-9675
Author(s):  
Inderjeet Singh ◽  
Manarshhjot Singh ◽  
Ismail Bensekrane ◽  
Othman Lakhal ◽  
Rochdi Merzouki

Robotica ◽  
2018 ◽  
Vol 37 (3) ◽  
pp. 502-520 ◽  
Author(s):  
Xianxi Luo ◽  
Shuhui Li ◽  
Shubo Liu ◽  
Guoquan Liu

SUMMARYThis paper presents an optimal trajectory planning method for industrial robots. The paper specially focuses on the applications of path tracking. The problem is to plan the trajectory with a specified geometric path, while allowing the position and orientation of the path to be arbitrarily selected within the specific ranges. The special contributions of the paper include (1) an optimal path tracking formulation focusing on the least time and energy consumption without violating the kinematic constraints, (2) a special mechanism to discretize a prescribed path integration for segment interpolation to fulfill the optimization requirements of a task with its constraints, (3) a novel genetic algorithm (GA) optimization approach that transforms a target path to be tracked as a curve with optimal translation and orientation with respect to the world Cartesian coordinate frame, (4) an integration of the interval analysis, piecewise planning and GA algorithm to overcome the challenges for solving the special trajectory planning and path tracking optimization problem. Simulation study shows that it is an insufficient condition to define a trajectory just based on the consideration that each point on the trajectory should be reachable. Simulation results also demonstrate that the optimal trajectory for a path tracking problem can be obtained effectively and efficiently using the proposed method. The proposed method has the properties of broad adaptability, high feasibility and capability to achieve global optimization.


Author(s):  
Zhijun Chen ◽  
Feng Gao

Current studies on time-optimal trajectory planning centers on cases with fixed base and only one end-effector. However, the free-floating body and the multiple legs of the legged robot make the current methods inapplicable. This paper proposes a time-optimal trajectory planning method for six-legged robots. The model of the optimization problem for six-legged robots is built by considering the base and the end-effectors separately. Both the actuator constraints and the gait cycle constraints are taken into account. A novel two-step optimization method is proposed to solve the optimization problem. The first step solves the time-optimal trajectory of the body and the second step solves the time-optimal trajectory of the swinging legs. Finally, the method is applied to a six-parallel-legged robot and validated by experiments on the prototype. The results show that the velocity of the optimized gait is improved by 17.8% in contrast to the non-optimized one.


Sign in / Sign up

Export Citation Format

Share Document