Co-Evolution of Fuzzy Controller for the Mobile Robot Control

Author(s):  
Kwang-Sub Byun ◽  
◽  
Chang-Hyun Park ◽  
Kwee-Bo Sim

In this paper, we design the fuzzy rules using a modified Nash Genetic Algorithm. Fuzzy rules consist of antecedents and consequents. Because this paper uses the simplified method of Sugeno for the fuzzy inference engine, consequents have not membership functions but constants. Therefore, each fuzzy rule in this paper consists of a membership function in the antecedent and a constant value in the consequent. The main problem in fuzzy systems is how to design the fuzzy rule base. Modified Nash GA coevolves membership functions and parameters in consequents of fuzzy rules. We demonstrate this co-evolutionary algorithm and apply to the design of the fuzzy controller for a mobile robot. From the result of simulation, we compare modified Nash GA with the other co-evolution algorithms and verify the efficacy of this algorithm.

2021 ◽  
Vol 2 ◽  
pp. 139-159
Author(s):  
Olexey Kozlov ◽  
◽  
Yuri Kondratenko ◽  

This article is devoted to the efficiency of a method of optimal membership functions search for fuzzy systems based on bioinspired evolutionary algorithms of global optimization. The proposed method allows finding the optimal membership functions of linguistic terms at solving the compromise problem of minimizing the objective function and reducing computational costs in the process of further parametric optimization of fuzzy systems. To study the effectiveness of the considered method in this work, the search of the optimal membership functions is conducted for a fuzzy controller of the control system of a multi-purpose mobile robot designed to move along inclined and vertical ferromagnetic surfaces, with the implementation of this method based on 3 bioinspired evolutionary algorithms: genetic, artificial immune systems, biogeo­graphic. The analysis of the obtained results of computer modeling showed that the usage of the proposed method of search of optimal membership functions gives the opportunity to increase significantly the efficiency of the mobile robot control, as well as to reduce the total number of parameters at further parametric optimization of linguistic terms, which confirms the high efficiency of the developed method.


Robotica ◽  
2005 ◽  
Vol 23 (6) ◽  
pp. 681-688 ◽  
Author(s):  
Makoto Kern ◽  
Peng-Yung Woo

Fuzzy logic has features that are particular attractive in light of the problems posed by autonomous robot navigation. Fuzzy logic allows us to model different types of uncertainty and imprecision. In this paper, the implementation of a hexapod mobile robot with a fuzzy controller navigating in unknown environments is presented. The robot, MKIII, interprets input sensor data through the comparison of values in its fuzzy rule base and moves accordingly to avoid obstacles. Results of trial run experiments are presented.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Rahib H. Abiyev

Frequently the reliabilities of the linguistic values of the variables in the rule base are becoming important in the modeling of fuzzy systems. Taking into consideration the reliability degree of the fuzzy values of variables of the rules the design of inference mechanism acquires importance. For this purpose, Z number based fuzzy rules that include constraint and reliability degrees of information are constructed. Fuzzy rule interpolation is presented for designing of an inference engine of fuzzy rule-based system. The mathematical background of the fuzzy inference system based on interpolative mechanism is developed. Based on interpolative inference process Z number based fuzzy controller for control of dynamic plant has been designed. The transient response characteristic of designed controller is compared with the transient response characteristic of the conventional fuzzy controller. The obtained comparative results demonstrate the suitability of designed system in control of dynamic plants.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Najla Krichen ◽  
Mohamed Slim Masmoudi ◽  
Nabil Derbel

Purpose This paper aims to propose a one-layer Mamdani hierarchical fuzzy system (HFS) to navigate autonomously an omnidirectional mobile robot to a target with a desired angle in unstructured environment. To avoid collision with unknown obstacles, Mamdani limpid hierarchical fuzzy systems (LHFS) are developed based on infrared sensors information and providing the appropriate linear speed controls. Design/methodology/approach The one-layer Mamdani HFS scheme consists of three fuzzy logic units corresponding to each degree of freedom of the holonomic mobile robot. This structure makes it possible to navigate with an optimized number of rules. Mamdani LHFS for obstacle avoidance consists of a number of fuzzy logic units of low dimension connected in a hierarchical structure. Hence, Mamdani LHFS has the advantage of optimizing the number of fuzzy rules compared to a standard fuzzy controller. Based on sensors information inputs of the Mamdani LHFS, appropriate linear speed controls are generated to avoid collision with static obstacles. Findings Simulation results are performed with MATLAB software in interaction with the environment test tool “Robotino Sim.” Experiments have been done on an omnidirectional mobile robot “Robotino.” Simulation results show that the proposed approaches lead to satisfied performances in navigation between static obstacles to reach the target with a desired angle and have the advantage that the total number of fuzzy rules is greatly reduced. Experimental results prove the efficiency and the validity of the proposed approaches for the navigation problem and obstacle avoidance collisions. Originality/value By comparing simulation results of the proposed Mamdani HFS to another navigational controller, it was found that it provides better results in terms of path length in the same environment. Moreover, it has the advantage that the number of fuzzy rules is greatly reduced compared to a standard Mamdani fuzzy controller. The use of Mamdani LHFS in obstacle avoidance greatly reduces the number of involved fuzzy rules and overcomes the complexity of high dimensionality of the infrared sensors data information.


2008 ◽  
Vol 18 (1) ◽  
pp. 23-27 ◽  
Author(s):  
Hamid Boubertakh ◽  
Mohamed Tadjine ◽  
Pierre-Yves Glorennec ◽  
Salim Labiod

This paper proposes a new fuzzy logic-based navigation method for a mobile robot moving in an unknown environment. This method allows the robot obstacles avoidance and goal seeking without being stuck in local minima. A simple Fuzzy controller is constructed based on the human sense and a fuzzy reinforcement learning algorithm is used to fine tune the fuzzy rule base parameters. The advantages of the proposed method are its simplicity, its easy implementation for industrial applications, and the robot joins its objective despite the environment complexity. Some simulation results of the proposed method and a comparison with previous works are provided.


2020 ◽  
pp. 1-17
Author(s):  
D.S. Sfiris

This paper deals with improving the approximation capability of fuzzy systems. Fuzzy negations produced via conical sections are a promising methodology towards better fuzzy implications in fuzzy rules. The linguistic variables and the fuzzy rules are induced automatically following a fuzzy equivalence relation. The uncertainty of linear or nonlinear systems is thus dealt with. In this study, the clustering is optimized without human intervention, but also the best inference mechanism for a particular dataset is prescribed. It has been found that clustering based on fuzzy equivalence relation and fuzzy inference via conical sections leads to remarkably accurate approximations. A fuzzy rule based system with fewer control parameters is proposed. An application on telecom data shows the use of the methodology, its applicability to a real problem and its performance compared to other alternatives in terms of quality.


Author(s):  
Rajmeet Singh ◽  
Tarun Kumar Bera

AbstractThis work describes design and implementation of a navigation and obstacle avoidance controller using fuzzy logic for four-wheel mobile robot. The main contribution of this paper can be summarized in the fact that single fuzzy logic controller can be used for navigation as well as obstacle avoidance (static, dynamic and both) for dynamic model of four-wheel mobile robot. The bond graph is used to develop the dynamic model of mobile robot and then it is converted into SIMULINK block by using ‘S-function’ directly from SYMBOLS Shakti bond graph software library. The four-wheel mobile robot used in this work is equipped with DC motors, three ultrasonic sensors to measure the distance from the obstacles and optical encoders to provide the current position and speed. The three input membership functions (distance from target, angle and distance from obstacles) and two output membership functions (left wheel voltage and right wheel voltage) are considered in fuzzy logic controller. One hundred and sixty-two sets of rules are considered for motion control of the mobile robot. The different case studies are considered and are simulated using MATLAB-SIMULINK software platform to evaluate the performance of the controller. Simulation results show the performances of the navigation and obstacle avoidance fuzzy controller in terms of minimum travelled path for various cases.


2021 ◽  
Author(s):  
Shahrooz Alimoradpour ◽  
Mahnaz Rafie ◽  
Bahareh Ahmadzadeh

Abstract One of the classic systems in dynamics and control is the inverted pendulum, which is known as one of the topics in control engineering due to its properties such as nonlinearity and inherent instability. Different approaches are available to facilitate and automate the design of fuzzy control rules and their associated membership functions. Recently, different approaches have been developed to find the optimal fuzzy rule base system using genetic algorithm. The purpose of the proposed method is to set fuzzy rules and their membership function and the length of the learning process based on the use of a genetic algorithm. The results of the proposed method show that applying the integration of a genetic algorithm along with Mamdani fuzzy system can provide a suitable fuzzy controller to solve the problem of inverse pendulum control. The proposed method shows higher equilibrium speed and equilibrium quality compared to static fuzzy controllers without optimization. Using a fuzzy system in a dynamic inverted pendulum environment has better results compared to definite systems, and in addition, the optimization of the control parameters increases the quality of this model even beyond the simple case.


2013 ◽  
pp. 498-512
Author(s):  
Erik Cuevas ◽  
Daniel Zaldivar ◽  
Marco Perez-Cisneros

Reliable corner detection is an important task in pattern recognition applications. In this chapter an approach based on fuzzy-rules to detect corners even under imprecise information is presented. The uncertainties arising due to various types of imaging defects such as blurring, illumination change, noise, et cetera. Fuzzy systems are well known for efficient handling of impreciseness. In order to handle the incompleteness arising due to imperfection of data, it is reasonable to model corner properties by a fuzzy rule-based system. The robustness of the proposed algorithm is compared with well known conventional detectors. The performance is tested on a number of benchmark test images to illustrate the efficiency of the algorithm in noise presence.


Author(s):  
Tze Ling Jee ◽  
Kai Meng Tay ◽  
Chee Khoon Ng

A search in the literature reveals that the use of fuzzy inference system (FIS) in criterion-referenced assessment (CRA) is not new. However, literature describing how an FIS-based CRA can be implemented in practice is scarce. Besides, for an FIS-based CRA, a large set of fuzzy rules is required and it is a rigorous work in obtaining a full set of rules. The aim of this chapter is to propose an FIS-based CRA procedure that incorporated with a rule selection and a similarity reasoning technique, i.e., analogical reasoning (AR) technique, as a solution for this problem. AR considers an antecedent with an unknown consequent as an observation, and it deduces a conclusion (as a prediction of the consequent) for the observation based on the incomplete fuzzy rule base. A case study conducted in Universiti Malaysia Sarawak is further reported.


Sign in / Sign up

Export Citation Format

Share Document