National Crisis and Resilience Planning – How to Measure Huge and Compound Disaster that Causes National Crisis –

2016 ◽  
Vol 11 (5) ◽  
pp. 911-925
Author(s):  
Itsuki Nakabayashi ◽  
◽  

In the last two decades, three great earthquakes have occurred in Japan: the Hanshin-Awaji earthquake of 1995, the Mid-Niigata earthquake of 2004, and the East Japan Earthquake of 2011. After the East Japan earthquake, a devastating tsunami caused significant casualties and home destruction. More than 18,500 people were killed and more than 121,000 homes were destroyed. In addition, the tsunami destroyed nuclear power stations, which resulted in a severe crisis not previously experienced in Japan.On the other hand, earthquake disasters on a huge scale have been announced to occur as probability of about 70% in the next three decades. One such earthquake is Tokyo inland earthquake that destroys 610,000 homes and kills 23,000 people, and the other is the Nankai Trough earthquake that destroys 2,380,000 homes and kills 320,000 people. In addition, compound disasters where one disaster merges with another disaster may cause damage on a mega scale in this century.In order to address these mega disasters, it is very important to make efforts to reduce damage in the pre-disaster period. According to local plans for national resilience, each municipality must make efforts to reduce level of damage which is able to response trough a Business Continuity Plan (BCP). In addition, each municipality must implement long-term urban projects with a vision toward reconstruction after a mega disaster trough a pre-disaster recovery and reconstruction plan. It is necessary to make revolutionary efforts rather than standard disaster management efforts to reduce damages in the pre-disaster period.

KronoScope ◽  
2004 ◽  
Vol 4 (2) ◽  
pp. 297-315 ◽  
Author(s):  
Barbara Adam

AbstractWe think of memories as being focused on the past. However, our ability to move freely in the temporal realm of past, present and future is far more complex and sophisticated than commonsense would suggest. In this paper I am concerned with our capacity to produce and extend ourselves into the far future, for example through nuclear power or the genetic modification of food, on the one hand, and our inability to know the potential, diverse and multiple outcomes of this technologically constituted futurity, on the other. I focus on this discrepancy in order to explore what conceptual tools are available to us to take account of long-term futures produced by the industrial way of life. And I identify some historical approaches to the future on the assumption that the past may well hold vital clues for today's dilemma, hence my proposal to engage in 'memory of futures'. I conclude by considering the potential of 'memory aids for the future' as a means to better encompass in contemporary concerns the long-term futures of our making.


Author(s):  
L. A. Pisarevskii ◽  
A. B. Korostelev ◽  
A. A. Lipatov ◽  
G. A. Filippov ◽  
T. Yu. Kin

Elaboration of modern domestic structural materials with increased corrosion resistance in contact with advanced heatcarriers of future reactor plants is an important problem at development of innovation projects of nuclear power engineering. Heatexchanging tubes are the critical components, which influence on the safety and reliability of steam generators operation. Corrosion properties of non-stabilized nitrogen-containing corrosion resistant steels of austenite class after cold deformation, thermal treatment and long-term thermal aging studied. It was shown, that silicon introducing into chrome-nickel steel, alloyed by nitrogen and molybdenum, results in increasing of its resistance against local kinds of corrosion and equated it on resistance against intercrystallite and pitting corrosion with particularly low-carbon steels and alloys. But the experimental 03Х18Н13С2АМ2ВФБР-Ш low carbon micro-alloyed steel, proposed for operation at a heat-carrier temperature of 450–500 о С, in the first version had a tendency to a decrease of resistance against local corrosion and impact resistance after long-term thermal aging at temperatures of 360 о С and higher. At present specifying of technological parameters of production and balanced alloying element content takes place, which prevents heat exchanging tubes properties degradation. Steel 03Х17Н13С2АМ2 which has higher resistance against local corrosion and strength comparing with 316LN and 08Х18Н10Т grades, can be taken as a candidate material for production of heat-exchanging tubes of steam generators of nuclear power stations having power reactors of water-water type. The new 03Х17Н9АС2 steel, resistant against inter-crystallite corrosion in high-oxidizing media, was proposed for tests of its operation under conditions of contact with lead heat-carriers instead of 10Х15Н9С3Б1-Ш (ЭП 302-Ш) steel.


Author(s):  
Georges Bezdikian

The approach used by the French utility, concerning the Aging Management system of the Steam Generators (SG) and Reactor Pressure Vessel Heads, applied on 58 PWR NPPs, involves the verification of the integrity of the component and the Life Management of each plant to guarantee in the first step the design life management and in the second step to prepare long term life time in operation, taking into account the degradation of Alloy 600 material and the replacement of these materials by components made with Alloy 690. The financial stakes associated with maintaining the lifetime of nuclear power stations are very high; thus, if their lifetime is shortened by about ten years, dismantling and renewal would be brought forward which would increase their costs by several tens of billions of Euros. The main objectives are: • to maintain current operating performances (safety, availability, costs, security, environment) in the long term, and possibly improve on some aspects; • wherever possible, to operate the units throughout their design lifetime, 40 years, and even more if possible. This paper shows the program to follow the aging evaluation with application of specific criteria for SG and for Vessel Heads, and the replacement of the Steam Generators and Vessel Heads at the best period. The strategy of Steam Generators Replacement are developed and Vessel Head program of monitoring and replacement are detailed.


In the 20 years since the Calder Hall reactors were ordered, the U.K. has accumulated wide experience of building and operating nuclear power stations. Early stations proved expensive because of technological novelty and infrequent orders, but the economics of nuclear power stations where regular orders can be assured are increasingly favourable. Other factors do not provide fundamental limitations to nuclear power growth. Trends in fossil-fuel prices suggest that most utilities will look mainly to nuclear plant to meet their electricity requirements. The substantial savings of fossil fuel already achieved will thus grow rapidly on a world-wide basis. Though it would take quite unexpected shifts in relative economics for nuclear stations completely to supplant conventional stations, particularly for peak demand situations, a high nuclear share of new capacity may begin to throw some strain on uranium reserves in the 1980s. The fast reactor, prototypes of which after long and careful development are commissioning in France, Russia and the U.K., can provide a huge increase obtainable from uranium resources, pending the successful introduction in the long term of fusion reactors.


1983 ◽  
Author(s):  
Peter Doyle ◽  
Lothar Schroeder ◽  
Stephen Brewer
Keyword(s):  

2005 ◽  
Vol 44 (03) ◽  
pp. 107-117
Author(s):  
R. G. Meyer ◽  
W. Herr ◽  
A. Helisch ◽  
P. Bartenstein ◽  
I. Buchmann

SummaryThe prognosis of patients with acute myeloid leukaemia (AML) has improved considerably by introduction of aggressive consolidation chemotherapy and haematopoietic stem cell transplantation (SCT). Nevertheless, only 20-30% of patients with AML achieve long-term diseasefree survival after SCT. The most common cause of treatment failure is relapse. Additionally, mortality rates are significantly increased by therapy-related causes such as toxicity of chemotherapy and complications of SCT. Including radioimmunotherapies in the treatment of AML and myelodyplastic syndrome (MDS) allows for the achievement of a pronounced antileukaemic effect for the reduction of relapse rates on the one hand. On the other hand, no increase of acute toxicity and later complications should be induced. These effects are important for the primary reduction of tumour cells as well as for the myeloablative conditioning before SCT.This paper provides a systematic and critical review of the currently used radionuclides and immunoconjugates for the treatment of AML and MDS and summarizes the literature on primary tumour cell reductive radioimmunotherapies on the one hand and conditioning radioimmunotherapies before SCT on the other hand.


2018 ◽  
pp. 49-68 ◽  
Author(s):  
M. E. Mamonov

Our analysis documents that the existence of hidden “holes” in the capital of not yet failed banks - while creating intertemporal pressure on the actual level of capital - leads to changing of maturity of loans supplied rather than to contracting of their volume. Long-term loans decrease, whereas short-term loans rise - and, what is most remarkably, by approximately the same amounts. Standardly, the higher the maturity of loans the higher the credit risk and, thus, the more loan loss reserves (LLP) banks are forced to create, increasing the pressure on capital. Banks that already hide “holes” in the capital, but have not yet faced with license withdrawal, must possess strong incentives to shorten the maturity of supplied loans. On the one hand, it raises the turnovers of LLP and facilitates the flexibility of capital management; on the other hand, it allows increasing the speed of shifting of attracted deposits to loans to related parties in domestic or foreign jurisdictions. This enlarges the potential size of ex post revealed “hole” in the capital and, therefore, allows us to assume that not every loan might be viewed as a good for the economy: excessive short-term and insufficient long-term loans can produce the source for future losses.


Sign in / Sign up

Export Citation Format

Share Document