Collision-Free Trajectory Planning for a Two-Dimensional Mobile Robot by Optimizing Continuous Curves

1998 ◽  
Vol 10 (4) ◽  
pp. 364-369 ◽  
Author(s):  
Hiroaki Ozaki ◽  
◽  
Chang-jun Lin

We propose a new algorithm for planning collision-free trajectories for a mobile robot. The trajectories of the mobile robot are described by uniform B-spline curves and these control points are optimized using the complex method. The complex method is very effective for this type of optimization of nonlinear problems because it does not require any computation of the gradient of performance index. B-spline curves have advantages for trajectory generation in that they guarantee the continuity of trajectories and the order of trajectories can be changed easily. Effectiveness is also confirmed by trajectory planning simulation of a two-dimensional mobile robot.

1994 ◽  
Vol 6 (6) ◽  
pp. 491-498 ◽  
Author(s):  
Hiroaki Ozaki ◽  
◽  
Hua Chiu ◽  

A basic optimization algorithm is presented in this paper, in order to obtain the optimum solution of a two-point boundary value variational problem without constraints. The solution is given by a parallel and iterative computation and described as a set of control points of a uniform B-spline. This algorithm can also be applied to solving problems with some constraints, if we introduce an additional component, namely the potential function, corresponding to constraints in the original objective function. The algorithm is very simple and easily applicable to various engineering problems. As an application, trajectory planning of a manipulator with redundant degrees of freedom is considered under the conditions that the end effector path, the smoothness of movement, and the constraints of the control or the state variables are specified. The validity of the algorithm is well confirmed by numerical examples.


Author(s):  
Horacio Flórez Guzmán ◽  
Raúl Manzanilla Morillo

Abstract A computer code for the generation of unstructured two-dimensional triangular meshes around arbitrary complex geometries has been developed. The code is based on Delaunay triangulation with an automatic point insertion scheme and a smoothing technique. The geometrical definition of the domain to be meshed is prescribed by means of B-spline curves obtained from two approaches of interest in Computer-Aided Geometric Design named inverse design and interpolation problems. The presented scheme is based on an interpolation procedure along a B-spline curve proposed by the author in a recent paper. This technique prevents that the resulting grid may overlap convex portions of the boundaries. The main goal is to study the possibility of extend the methodology of unstructured grid generation beginning with boundaries described by polylines to other in which they are prescribed by piecewise polynomials curves capable to drive more realistic problems. Several figures and examples from Computational Fluid Dynamics have been included to show the various steps of the algorithm. The results show that the code is able to solve the problem of automatic grid generation in a robust manner opening new perspectives for the development of a black-box grid generator.


1988 ◽  
Vol 38 (2) ◽  
pp. 307-313 ◽  
Author(s):  
Heinz H. Gonska ◽  
Andreas Röth

Inserting new knots into B-spline curves is a well-known technique in CAGD to gain extra flexibility for design purposes. However, from a user's point of view, the insertion of knots is somewhat unsatisfactory since the newly generated control points sometimes show up in unexpected locations. The aim of this note is to show that these problems can be circumvented by inserting the control vertices directly, thus also providing a more natural user interface.


Author(s):  
YIJUN XIAO ◽  
MINGYUE DING ◽  
JIAXIONG PENG

This paper presents a novel curve based algorithm of stereo vision to reconstruct 3D line-like objects. B-spline approximations of 2D edge curves are selected as primitives for the reconstruction of their corresponding space curves so that, under the assumption of affine camera model, a 3D curve can be derived from reconstructing its control points according to the affine invariant property of B-Spline curves. The superiority of B-spline model in representing free-form curves gives good geometric properties of reconstruction results. Both theoretical analysis and experimental results demonstrate the validity of our approach.


2019 ◽  
Vol 3 (2) ◽  
pp. 36-49
Author(s):  
Amna Abdul Sittar ◽  
Abdul Majeed ◽  
Abd Rahni Mt Piah

The B-spline curves, particularly trigonometric B-spline curves, have attained remarkable significance in the field of Computer Aided Geometric Designing (CAGD). Different researchers have developed different interpolants for shape designing using Ball, Bezier and ordinary B-spline. In this paper, quadratic trigonometric B-spline (piecewise) curve has been developed using a new basis for shape designing. The proposed method has one shape parameter which can be used to control and change the shape of objects. Different objects like flower, alphabet and vase have been designed using the proposed method. The effects of shape parameter and control points have been discussed also.


2012 ◽  
Vol 241-244 ◽  
pp. 2144-2148
Author(s):  
Li Juan Chen ◽  
Ming Zhu Li

A T-B spline curves with a shape parameter λ is presented in this paper, which has simple structure and can be used to design curves. Analogous to the four B-spline curves, each curve segment is generated by five consecutive control points. For equidistant knots, the curves are C^2 continuous, but when the shape parameter λ equals to 0 , the curves are C^3 continuous. Moreover, this spline curve can be used to construct open and closed curves and can express ellipses conveniently.


1993 ◽  
Vol 115 (3) ◽  
pp. 679-684 ◽  
Author(s):  
D. C. H. Yang

This paper presents a method and an algorithm for the planning of collision-free paths through obstacles for robots end-effectors or autonomously guided vehicles. Fifth-order nonperiodic B-spline curves are chosen for this purpose. The main ideas are twofold: first, to avoid collision by moving around obstacles from the less blocking sides; and second, to assign two control points to all vertices of the control polygon. This method guarantees the generation of paths which have C3 continuity everywhere and satisfy the collision-free requirement. In addition, the obstacles can be of any shape, and the computational complexity and difficulty are relatively low. A computer code is developed for the implementation of this method. Case studies are given for illustration.


Fractals ◽  
2011 ◽  
Vol 19 (01) ◽  
pp. 67-86 ◽  
Author(s):  
KONSTANTINOS I. TSIANOS ◽  
RON GOLDMAN

We extend some well known algorithms for planar Bezier and B-spline curves, including the de Casteljau subdivision algorithm for Bezier curves and several standard knot insertion procedures (Boehm's algorithm, the Oslo algorithm, and Schaefer's algorithm) for B-splines, from the real numbers to the complex domain. We then show how to apply these polynomial and piecewise polynomial algorithms in a complex variable to generate many well known fractal shapes such as the Sierpinski gasket, the Koch curve, and the C-curve. Thus these fractals also have Bezier and B-spline representations, albeit in the complex domain. These representations allow us to change the shape of a fractal in a natural manner by adjusting their complex Bezier and B-spline control points. We also construct natural parameterizations for these fractal shapes from their Bezier and B-spline representations.


Author(s):  
D. C. H. Yang

Abstract This paper presents a method and a algorithm for the planning of collision-free paths through obstacles for robots end-effectors or autonomously guided vehicles. Fifth-order non-periodic curves are chosen for this purpose. The main ideas are twofold: firstly, to avoid collision by moving around obstacles from the less blocking sides; and secondly, to assign two control points to all vertices of the control polygon. This method guarantees the generation of paths which have C3 continuity everywhere and satisfy the collision-free requirement. In addition, the obstacles can be of any shape, and the computational complexity and difficulty are relatively low. A computer code is developed for the implementation of this method. Cases study is given for illustration.


2013 ◽  
Vol 444-445 ◽  
pp. 191-195
Author(s):  
Xiao Yong Ma ◽  
Jun Qiang Ai ◽  
Ji Xiang Shan ◽  
Yong Hong Li

A free deformation method based on the B-Spline (NURBS) and surface superposition technique was presented for complex aerodynamic shape deformation. The influences of control parameters including control points, order, knots and weights are analyzed with B-spline curves case. Using the developed method, the application of surface grids deformation on the wing and pylon of DLR-F6 plane shows that the control parameters only influence its local surface, and this method could describe complex surfaces effectively, which means that this method is feasible and applicable to model representation, surface grids deformation and aerodynamic shape optimization.


Sign in / Sign up

Export Citation Format

Share Document