scholarly journals INVESTIGATION OF THE NORMAL VIBRATION MODES STABILITY IN SOME ESSENTIALLY NONLINEAR SYSTEMS

Author(s):  
Natalia Goloskubova ◽  
Yuri Mikhlin

In the paper stability of nonlinear normal modes is analyzed by two approaches. One of them is the method of Ince algebraization, when a new independent variable associated with the unperturbed solution is introduced in the problem. In this case equations in variations are transformed to equations with singular points. The problem of determination of solutions corresponding to boundaries of the stability/ instability regions is reduced here to the problem of determination of functions that have singularity at the mentioned points. Such solutions can be obtained in the form of power series, which coefficients are satisfying a system of homogeneous linear algebraic equations. The condition ensuring the existence non-trivial solutions for such systems determines the boundaries between the stability / instability regions in the system parameter space. An advantage of the Ince algebraization is that we do not use the time-presentation of the solution when studying its stability. Other approach to investigating steady state stability is associated with the classical Lyapunov definition of stability. The analytical-numerical test proposed in the paper can be applied to a stability problem when the problem has no analytical solution. It also allows to obtain boundaries between the stability / instability regions in the system parameter space. In the present paper the first approach is used to analyze stability of normal vibration modes in the system of connected oscillators on the essentially nonlinear elastic support, and the second one is used to analyze stability of a horizontal vibration mode in the so-called stochastic absorber.

1981 ◽  
Vol 48 (4) ◽  
pp. 876-880 ◽  
Author(s):  
T. D. Gerhardt ◽  
Shun Cheng

An improved elasticity solution for the cylinder problem with axisymmetric torsionless end loading is presented. Consideration is given to the specification of arbitrary stresses on the end of a semi-infinite cylinder with a stress-free lateral surface. As is known from the literature, the solution to this problem is obtained in the form of a nonorthogonal eigenfunction expansion. Previous solutions have utilized functions biorthogonal to the eigenfunctions to generate an infinite system of linear algebraic equations for determination of the unknown expansion coefficients. However, this system of linear equations has matrices which are not diagonally dominant. Consequently, numerical instability of the calculated eigenfunction coefficients is observed when the number of equations kept before truncation is varied. This instability has an adverse effect on the convergence of the calculated end stresses. In the current paper, a new Galerkin formulation is presented which makes this system of equations diagonally dominant. This results in the precise calculation of the eigenfunction coefficients, regardless of how many equations are kept before truncation. By consideration of a numerical example, the present solution is shown to yield an accurate calculation of cylinder stresses and displacements.


Symmetry ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 904 ◽  
Author(s):  
Afshin Babaei ◽  
Hossein Jafari ◽  
S. Banihashemi

A spectral collocation approach is constructed to solve a class of time-fractional stochastic heat equations (TFSHEs) driven by Brownian motion. Stochastic differential equations with additive noise have an important role in explaining some symmetry phenomena such as symmetry breaking in molecular vibrations. Finding the exact solution of such equations is difficult in many cases. Thus, a collocation method based on sixth-kind Chebyshev polynomials (SKCPs) is introduced to assess their numerical solutions. This collocation approach reduces the considered problem to a system of linear algebraic equations. The convergence and error analysis of the suggested scheme are investigated. In the end, numerical results and the order of convergence are evaluated for some numerical test problems to illustrate the efficiency and robustness of the presented method.


1977 ◽  
Vol 83 (3) ◽  
pp. 569-604 ◽  
Author(s):  
M. E. Goldstein ◽  
Willis Braun ◽  
J. J. Adamczyk

Linearized theory is used to study the unsteady flow in a supersonic cascade with in-passage shock waves. We use the Wiener–Hopf technique to obtain a closed-form analytical solution for the supersonic region. To obtain a solution for the rotational flow in the subsonic region we must solve an infinite set of linear algebraic equations. The analysis shows that it is possible to correlate quantitatively the oscillatory shock motion with the Kutta condition at the trailing edges of the blades. This feature allows us to account for the effect of shock motion on the stability of the cascade.Unlike the theory for a completely supersonic flow, the present study predicts the occurrence of supersonic bending flutter. It therefore provides a possible explanation for the bending flutter that has recently been detected in aircraft-engine compressors at higher blade loadings.


Author(s):  
Борис Михайлович Шумилов

В пространстве кубических сплайнов построены вейвлеты, удовлетворяющие однородным граничным условиям Дирихле и обнулению первых четырех моментов. Получены неявные соотношения, связывающие сплайн-коэффициенты разложения на начальном уровне со сплайн-коэффициентами и вейвлет-коэффициентами на вложенном уровне ленточной системой линейных алгебраических уравнений с невырожденной матрицей. После расщепления на четные и нечетные уравнения матрица преобразования имеет пять (вместо трех в случае двух нулевых моментов) диагоналей. Доказано наличие строгого диагонального доминирования по столбцам. Для сравнения использованы вейвлеты с двумя нулевыми моментами и интерполяционные кубические сплайновые вейвлеты. Результаты численных экспериментов показывают, что схема с четырьмя нулевыми моментами точнее при аппроксимации функций, но грубее при аппроксимации второй производной. The article examines the problem of constructing a splitting algorithm for cubic spline wavelets. First, a cubic spline space is constructed for splines with homogeneous Dirichlet boundary conditions. Then, using the first four zero moments, the corresponding wavelet space is constructed. The resulting space consists of cubic spline wavelets that satisfy the orthogonality conditions for all thirddegree polynomials. The originality of the research lies in obtaining implicit relations connecting the coefficients of the spline expansion at the initial level with the spline coefficients and wavelet coefficients at the embedded level by a band system of linear algebraic equations with a nondegenerate matrix. Excluding the even rows of the system, the resulting transformation algorithm is obtained as a solution to a sequence of band systems of linear algebraic equations with five (instead of three in the case of two zero moments) diagonals. The presence of strict diagonal dominance over the columns is proved, which confirms the stability of the computational process. For comparison, we adopt the results of calculations using wavelets orthogonal to first-degree polynomials and interpolating cubic spline wavelets with the property of the best mean-square approximation of the second derivative of the function being approximated. The results of numerical experiments show that the scheme with four zero moments is more accurate in the approximation of functions, but becomes inferior in accuracy to the approximation of the second derivative.


2021 ◽  
Vol 2099 (1) ◽  
pp. 012016
Author(s):  
B M Shumilov

Abstract This study uses a zeroing property of the first six moments for constructing a splitting algorithm for the cubic spline wavelets. First, we construct a system of cubic basic spline-wavelets, realizing orthogonal conditions to all polynomials up to any degree. Then, using the homogeneous Dirichlet boundary conditions, we adapt spaces to the orthogonality to all polynomials up to the fifth degree on the closed interval. The originality of the study consists of obtaining implicit finite relations connecting the coefficients of the spline decomposition at the initial scale with the spline coefficients and wavelet coefficients at the nested scale by a tape system of linear algebraic equations with a non-degenerate matrix. After excluding the even rows of the system, the resulting transformation matrix has seven diagonals, instead of five as in the previous case with four zero moments. A modification of the system is performed, which ensures a strict diagonal dominance, and, consequently, the stability of the calculations. The comparative results of numerical experiments on approximating and calculating the derivatives of a discrete function are presented.


Author(s):  
Hryhorii Habrusiev ◽  
Iryna Habrusieva

Within the framework of linearized formulation of a problem of the elasticity theory, the stress-strain state of a predeformed plate, which is modeled by a prestressed layer, is analyzed in the case of its smooth contact interaction with a rigid axisymmetric parabolic indenter. The dual integral equations of the problem are solved by representing the quested-for functions in the form of a partial series sum by the Bessel functions with unknown coefficients. Finite systems of linear algebraic equations are obtained for determination of these coefficients. The influence of the initial strains on the magnitude and features of the contact stresses and vertical displacements on the surface of the plate is analyzed for the case of compressible and incompressible solids. In order to illustrate the results, the cases of the Bartenev – Khazanovich and the harmonic-type potentials are addressed.


Nonlinear traveling waves of the Klein-Gordon equation with cubic nonlinearity are considered. These waves are described by the nonlinear ordinary differential equation of the second order having the energy integral. Linearized equation for variation obtained for such waves is transformed to the ordinary one using separation of variables. Then so-called algebraization by Ince is used. Namely, a new independent variable associated with the solution under consideration is introduced to the equation in variations. Integral of energy for the stationary waves is used in this transformation. An advantage of this approach is that an analysis of the stability problem does no need to use the specific form of the solution under consideration. As a result of the algebraization, the equation in variations with variable in time coefficients is transformed to equation with singular points. Indices of the singularities are found. Necessary conditions of the waves stability are obtained. Solutions of the variational equation, corresponding to boundaries of the stability/instability regions in the system parameter space, are constructed in power series by the new independent variable. Infinite recurrent systems of linear homogeneous algebraic equations to determine coefficients of the series can be written. Non-trivial solutions of these systems can be obtained if their determinants are equal to zero. These determinants are calculated up to the fifth order inclusively, then relations connecting the system parameters and corresponding to boundaries of the stability/ instability regions in the system parameter place are obtained. Namely, the relation between parameters of anharmonicity and energy of the waves are constructed. Analytical results are illustrated by numerical simulation by using the Runge-Kutta procedure for some chosen parameters of the system. A correspondence of the numerical and analytical results is observed.


1980 ◽  
Vol 35 (10) ◽  
pp. 1054-1061 ◽  
Author(s):  
Friedrich Franz Seelig

Abstract Periodic structures in chemical kinetic systems can be evaluated by an extension of the well-known method of harmonic balance, which yields very simple expressions in the case of linear systems containing only zero and first order reactions. The far more interesting non-linear systems containing e.g. second order reactions which in case of open systems far from thermodynamic equilibrium give rise to non-classical phenomena like oscillations, chemical waves, excitability, hysteresis, multistability, dissipative structures etc. can be treated in a similar way by introducing new pseudo-linear quantities utilizing certain group properties of harmonic expansions. The resulting complicated implicit non-linear algebraic equations are solved by a method developed by Powell and show good convergence. Since this method - in contrast to the conventional method of simulation - is independent from the stability of the periodic structure to be evaluated it can even be applied to unstable cases where the simulation method necessarily fails. An evaluation of the stability is included in the developed computer program.


Sign in / Sign up

Export Citation Format

Share Document