REMEDIATION PROPERTIES OF MATERIALS TO TREAT ACID MINE DRAINAGE WATER AT A GOLD MINE OPERATION IN BRAZIL

2001 ◽  
Vol 2001 (1) ◽  
pp. 585-591 ◽  
Author(s):  
A.P. Pinto ◽  
T. R. Wildeman ◽  
J.J. Gusek
2006 ◽  
Vol 43 (11) ◽  
pp. 1167-1179 ◽  
Author(s):  
M Paradis ◽  
J Duchesne ◽  
A Lamontagne ◽  
D Isabel

Acid mine drainage (AMD) is an environmental problem produced when sulphides come in contact with an oxidant (± bacteria) and water, producing acid generation and metals leaching. One solution proposed is to use red mud bauxite (RMB), which is very alkaline, to neutralize oxidized acidic tailings. A column leaching test has been set up to evaluate major aspects of field constraints. First, a field investigation was conducted in which RMB was spread in aggregates before mixing with tailings. This setup has been reproduced in the laboratory and compared with a homogeneous mixture. The analyses of the water effluent do not show any important difference between the two mixtures. Second, some studies show that the addition of Cl brine to RMB helps to maintain the long-term neutralization potential. Brine addition increased the concentrations of Ca, Mg, Na, K, and Cu in drainage water. Columns were set up with 10% and 20% RMB to evaluate the effect of the quantity applied. Addition of greater than 20% RMB increases the leachate alkalinity and concentrations of Al, Cu, Pb, As, Fe, and SO42– in drainage waters. The addition of 10% RMB, however, significantly improves the quality of drainage water over a period of 125 days and results in concentrations and pH values within the ranges of those recommended by Directive 019 of the Ministère de l'environnement, Québec.Key words: acid mine drainage, red mud bauxite, tailings, environmental geochemistry, neutralization.


2011 ◽  
Vol 102 (2) ◽  
pp. 683-689 ◽  
Author(s):  
Erkan Sahinkaya ◽  
Fatih M. Gunes ◽  
Deniz Ucar ◽  
Anna H. Kaksonen

2009 ◽  
Vol 24 (12) ◽  
pp. 2301-2311 ◽  
Author(s):  
Manuel A. Caraballo ◽  
Tobias S. Rötting ◽  
Francisco Macías ◽  
José Miguel Nieto ◽  
Carlos Ayora

1985 ◽  
Vol 31 (1) ◽  
pp. 17-28 ◽  
Author(s):  
NORIO WAKAO ◽  
HIROKO TACHIBANA ◽  
YAEKO TANAKA ◽  
YONEKICHI SAKURAI ◽  
HIDEO SHIOTA

2009 ◽  
Vol 71-73 ◽  
pp. 557-560 ◽  
Author(s):  
Bo Wei Chen ◽  
Jian Kang Wen ◽  
Xing Yu Liu

An integrated sulfate reducing process was used to treat Acid Mine Drainage with high concentrations of Cu2+, Fe and SO42-. The water treatment system integrated a sulfidogenic UASB bioreactor with a precipitation reactor which was used to recover copper. Sodium lactate was used as energy source. The effective volume of the UASB reactor was 2 L and the hydraulic retention time was 12.57h. In the sulphate removal reactor, sulphate was removed from 21160 to 195 mg/L with a rate of 4427.8 mg/L/d. Cu2+ and Fe was removed by biologically generated S2- and OH- from 360 and 6520 to 0.049 mg/L and less than 10 mg/L respectively. The average COD, copper and iron removal rate was 2523.2, 15.21 and 274.98 mg/L/d separately. The effluent pH reached 6.0-7.0. The results showed potential usage of this bioreactor in treating Acid Mine Drainage.


Extremophiles ◽  
2018 ◽  
Vol 22 (5) ◽  
pp. 699-711 ◽  
Author(s):  
José O. Bonilla ◽  
Daniel G. Kurth ◽  
Fabricio D. Cid ◽  
José H. Ulacco ◽  
Raúl A. Gil ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document