eukaryotic community
Recently Published Documents


TOTAL DOCUMENTS

53
(FIVE YEARS 27)

H-INDEX

13
(FIVE YEARS 3)

2022 ◽  
Vol 8 ◽  
Author(s):  
Stephanie M. Rosales ◽  
Lindsay K. Huebner ◽  
Abigail S. Clark ◽  
Ryan McMinds ◽  
Rob R. Ruzicka ◽  
...  

The epizootic disease outbreak known as stony coral tissue loss disease (SCTLD) is arguably the most devastating coral disease in recorded history. SCTLD emerged off the coast of South Florida in 2014 and has since moved into the Caribbean, resulting in coral mortality rates that have changed reef structure and function. Currently, the cause of SCTLD is unknown, but there is evidence from 16S rRNA gene sequencing and bacterial culture studies that the microbial community plays a role in the progression of SCTLD lesions. In this study, we applied shotgun metagenomics to characterize the potential function of bacteria, as well as the composition of the micro-eukaryotic community, associated with SCTLD lesions. We re-examined samples that were previously analyzed using 16S rRNA gene high-throughput sequencing from four coral species: Stephanocoenia intersepta, Diploria labyrinthiformis, Dichocoenia stokesii, and Meandrina meandrites. For each species, tissue from apparently healthy (AH) corals, and unaffected tissue (DU) and lesion tissue (DL) on diseased corals, were collected from sites within the epidemic zone of SCTLD in the Florida Keys. Within the micro-eukaryotic community, the taxa most prominently enriched in DL compared to AH and DU tissue were members of Ciliophora. We also found that DL samples were relatively more abundant in less energy-efficient pathways like the pentose phosphate pathways. While less energy-efficient processes were identified, there were also relatively higher abundances of nucleotide biosynthesis and peptidoglycan maturation pathways in diseased corals compared to AH, which suggests there was more bacteria growth in diseased colonies. In addition, we generated 16 metagenome-assembled genomes (MAGs) belonging to the orders Pseudomonadales, Beggiatoales, Rhodobacterales, Rhizobiales, Rs-D84, Flavobacteriales, and Campylobacterales, and all MAGs were enriched in DL samples compared to AH samples. Across all MAGs there were antibiotic resistance genes that may have implications for the treatment of SCTLD with antibiotics. We also identified genes and pathways linked to virulence, such as nucleotide biosynthesis, succinate dehydrogenase, ureases, nickel/iron transporters, Type-1 secretion system, and metalloproteases. Some of these enzymes/pathways have been previously targeted in the treatment of other bacterial diseases and they may be of interest to mitigate SCTLD lesion progression.


2021 ◽  
Author(s):  
Hyeon Been Lee ◽  
Dong Hyuk Jeong ◽  
Byung Cheol Cho ◽  
Jong Soo Park

AbstractSolar salterns are excellent artificial systems for examining species diversity and succession along salinity gradients. Here, the eukaryotic community in surface water of a Korean solar saltern (30 to 380 practical salinity units) was investigated from April 2019 to October 2020 using Illumina sequencing targeting the V4 and V9 regions of 18S rDNA. A total of 926 operational taxonomic units (OTUs) and 1,999 OTUs were obtained with the V4 and V9 regions, respectively. Notably, most of the OTUs were microbial eukaryotes, and the high-abundance groups (> 5% relative abundance (RA), Alveolata, Stramenopila, Archaeplastida, and Opisthokonta) usually accounted for > 90% of the total cumulative read counts and > 80% of all OTUs. Moreover, the high-abundance Alveolata (larger forms) and Stramenopila (smaller forms) groups displayed a significant inverse relationship, probably due to predator–prey interactions. Most of the low-abundance (0.1–5% RA) and rare (< 0.1% RA) groups remained small portion during the field surveys. Taxonomic novelty (at < 90% sequence identity) was high in the Amoebozoa, Cryptista, Haptista, Rhizaria, and Stramenopila groups (69.8% of all novel OTUs), suggesting the presence of a large number of hidden species in hypersaline environments. Remarkably, the high-abundance groups had little overlap with the other groups, implying the weakness of rare-to-prevalent community dynamics. The low-abundance Discoba group alone temporarily became the high-abundance group, suggesting that it is an opportunistic group. Overall, the composition and diversity of the eukaryotic community in hypersaline environments may be persistently stabilized, despite diverse disturbance events.


Author(s):  
Jun Yang ◽  
Kui Huang ◽  
Lansheng Peng ◽  
Jianhui Li ◽  
Aozhan Liu

DNA sequencing of active cells involved in vermicomposting can clarify the roles of earthworms in regulating functional microorganisms. This study aimed to investigate the effect of earthworms on functional microbial communities in sludge by comparing biodegradation treatments with and without earthworms. PCR and high throughput sequencing based on pretreatment of propidium monoazide (PMA) were used to detect the changes in active bacterial 16S rDNA and eukaryotic 18S rDNA during vermicomposting. The results showed that the nitrate in sludge vermicomposting and control were significantly different from day 10, with a more stable product at day 30 of vermicomposting. Compared with the control, the Shannon indexes of active bacteria and eukaryotes decreased by 1.9% and 31.1%, respectively, in sludge vermicompost. Moreover, Proteobacteria (36.2%), Actinobacteria (25.6%), and eukaryotic Cryptomycota (80.3%) were activated in the sludge vermicompost. In contrast, the control had Proteobacteria (44.8%), Bacteroidetes (14.2%), Cryptomycota (50.00%), and Arthropoda (36.59%). Network analysis showed that environmental factors had different correlations between active bacterial and eukaryotic community structures. This study suggests that earthworms can decrease the diversity of bacterial and eukaryotic communities, forming a specific-functional microbial community and thus accelerating organic matter decomposition during vermicomposting of dewatered sludge.


2021 ◽  
Author(s):  
Jun Xia ◽  
Sohiko Kameyama ◽  
Florian Prodinger ◽  
Takashi Yoshida ◽  
Kyoung-Ho Cho ◽  
...  

Viruses are important regulatory factors of marine microbial community including microeukaryotes. However, little is known about their role in the northern Chukchi Sea of the Arctic basin, which remains oligotrophic conditions in summer. To elucidate linkages of microbial eukaryotic community with viruses as well as environmental variables, we investigated the community structures of microeukaryotes (3-144 μm and 0.2-3 μm size fractions) and Imitervirales (0.2-3 μm size fraction), a major group of viruses infecting marine microeukaryotes. Surface water samples were collected at 21 ocean stations located in the northeastern Chukchi Sea (NECS), an adjacent area outside the Beaufort Gyre (Adjacent Sea; AS), and two melt ponds on sea ice in the summer of 2018. At the ocean stations, nutrient concentrations were low in most of the locations expect at the shelf in the AS. The community variations were significantly correlated between eukaryotes and Imitervirales, even within the NECS characterized by relatively homogeneous environmental conditions. The association of the eukaryotic community with the viral community was stronger than that with geographical and physicochemical environmental factors. These results suggest that Imitervirales are actively infecting their hosts even in cold and oligotrophic sea water in the Arctic Ocean.


Water ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2129
Author(s):  
Fang Zhang ◽  
Yongjun Tian ◽  
Jianfeng He

Kongsfjorden is a small Arctic fjord but with great hydrographic complexity and has changed greatly due to the climate change. Arctic warming has increased melts of sea ice and glaciers that results in higher freshwater content. Microbial community variability and increasing terrestrial input were detected continuously in recent years ITag eukaryotic 18S rRNA V4 metabarcoding, photosynthetic pigments analysis and epifluorescence microscopy were used to reveal the dominant species of small eukaryotic community (<20 μm). Both Spearman correlation and redundant analysis were used to study the correlation between the small eukaryotes and the environmental conditions. In the present study, the surface water with salinity lower than 34 was thicker than in summers of previous years. The freshwater mixotrophic chrysophyte Poterioochromonas malhamensis was found for the first time as the dominant species. No general trends were found for the contributions of P. malhamensis to the total reads of small eukaryotes in water depths; and no obvious differences were found at different stations and water masses. Phagotrophy, which is more common than phototrophy at all times in P. malhamensis, is thought to be the main reason for the prevalence of P. malhamensis in Kongsfjorden. The occurrence of P. malhamensis induced a disorder in the small eukaryotic community, which biodiversity and composition showed weak correlation with the water masses. The dominance of the freshwater-originating phytoplankton may indicate an ecosystem change in the Kongsjforden, which probably might become more remarkable in the future as the climate continues to change.


Toxins ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 518
Author(s):  
Mattia Fragola ◽  
Maria Rita Perrone ◽  
Pietro Alifano ◽  
Adelfia Talà ◽  
Salvatore Romano

The atmosphere represents an underexplored temporary habitat for airborne microbial communities such as eukaryotes, whose taxonomic structure changes across different locations and/or regions as a function of both survival conditions and sources. A preliminary dataset on the seasonal dependence of the airborne eukaryotic community biodiversity, detected in PM10 samples collected from July 2018 to June 2019 at a coastal site representative of the Central Mediterranean, is provided in this study. Viridiplantae and Fungi were the most abundant eukaryotic kingdoms. Streptophyta was the prevailing Viridiplantae phylum, whilst Ascomycota and Basidiomycota were the prevailing Fungi phyla. Brassica and Panicum were the most abundant Streptophyta genera in winter and summer, respectively, whereas Olea was the most abundant genus in spring and autumn. With regards to Fungi, Botrytis and Colletotrichum were the most abundant Ascomycota genera, reaching the highest abundance in spring and summer, respectively, while Cryptococcus and Ustilago were the most abundant Basidiomycota genera, and reached the highest abundance in winter and spring, respectively. The genus community structure in the PM10 samples varied day-by-day, and mainly along with the seasons. The impact of long-range transported air masses on the same structure was also proven. Nevertheless, rather few genera were significantly correlated with meteorological parameters and PM10 mass concentrations. The PCoA plots and non-parametric Spearman’s rank-order correlation coefficients showed that the strongest correlations generally occurred between parameters reaching high abundances/values in the same season or PM10 sample. Moreover, the screening of potential pathogenic fungi allowed us to detect seven potential pathogenic genera in our PM10 samples. We also found that, with the exception of Panicum and Physcomitrella, all of the most abundant and pervasive identified Streptophyta genera could serve as potential sources of aeroallergens in the studied area.


2021 ◽  
pp. 117774
Author(s):  
Deepak Nanjappa ◽  
Yue Liang ◽  
Laura Bretherton ◽  
Chris Brown ◽  
Antonietta Quigg ◽  
...  

2021 ◽  
Vol 290 ◽  
pp. 112623
Author(s):  
David Correa-Galeote ◽  
Alba Roibás ◽  
Anuska Mosquera-Corral ◽  
Belén Juárez-Jiménez ◽  
Jesús González-López ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document