Anisotropic tensile behaviour of UHPFRC: meso-scale model and experimental validation

2019 ◽  
Author(s):  
M Pimentel
2018 ◽  
Vol 22 (6) ◽  
pp. 1838-1858 ◽  
Author(s):  
Sudharshan Anandan ◽  
Gurjot Dhaliwal ◽  
Shouvik Ganguly ◽  
K Chandrashekhara

A sandwich structure consists of a two thin and strong facesheets, bonded to a thick lightweight core material. The mechanical response of a sandwich structure depends on the properties of its constituents. A numerical model and experimental validation of the three-point bending test of sandwich composites are presented in this study. The core material is aluminum honeycomb. The facesheets are made of IM7/Cycom5320-1, which is a carbon fiber/epoxy prepreg system. A comprehensive model of the failure under flexural loading was developed. Facesheet failure was modeled using Hashin’s failure criteria. A detailed meso-scale model of the honeycomb core was included in the model. The experiments indicated that failure initiation was due to local buckling in the honeycomb core. Failure propagation was in the form of core failure, facesheet compressive failure, and interlaminar failure. The developed meso-scale model was able to accurately simulate failure initiation and propagation in the composite sandwich structure. The effect of elevated temperature on the three-point bending behavior was studied numerically as well as experimentally. An increase in test temperature to 100°C resulted in a drop of 9.2% in flexural strength, which was also predicted by the numerical model.


2021 ◽  
pp. 105678952110339
Author(s):  
Hongyong Jiang ◽  
Yiru Ren ◽  
Qiduo Jin

A novel synergistic multi-scale modeling framework with a coupling of micro- and meso-scale is proposed to predict damage behaviors of 2D-triaxially braided composite (2DTBC). Based on the Bridge model, the internal stress and micro damage of constituent materials are respectively coupled with the stress and damage of tow. The initial effective elastic properties of tow (IEEP) used as the predefined data are estimated by micro-mechanics models. Due to in-situ effects, stress concentration factor (SCF) is considered in the micro matrix, exhibiting progressive damage accumulation. Comparisons of IEEP and strengths between the Bridge and Chamis’ theory are conducted to validate the values of IEEP and SCF. Based on the representative volume element (RVE), the macro properties and damage modes of 2DTBC are predicted to be consistent with available experiments and meso-scale simulation. Both axial and transverse damage mechanisms of 2DTBC under tensile or compressive load are revealed. Micro fiber and matrix damage accumulations have significant effects on the meso-scale axial and transverse damage of tows due to multi-scale coupling effects. Different from existing meso-/multi-scale models, the proposed multi-scale model can capture a crucial phenomenon that the transverse damage of tow is vulnerable to micro fiber fracture. The proposed multi-scale framework provides a robust tool for future systematic studies on constituent materials level to larger-scale aeronautical materials.


2012 ◽  
Vol 2012 ◽  
pp. 1-15 ◽  
Author(s):  
P. Goswami ◽  
J. Baruah

Concentrations of atmospheric pollutants are strongly influenced by meteorological parameters like rainfall, relative humidity and wind advection. Thus accurate specifications of the meteorological fields, and their effects on pollutants, are critical requirements for successful modelling of air pollution. In terms of their applications, pollutant concentration models can be used in different ways; in one, short term high resolution forecasts are generated to predict and manage urban pollution. Another application of dynamical pollution models is to generate outlook for a given airbasin, such as over a large city. An important question is application-specific model configuration for the meteorological simulations. While a meso-scale model provides a high-resolution configuration, a global model allows better simulation of large-sale fields through its global environment. Our objective is to comparatively evaluate a meso-scale atmospheric model (MM5) and atmospheric global circulation model (AGCM) in simulating different species of pollutants over different airbasins. In this study we consider four locations: ITO (Central Delhi), Sirifort (South Delhi), Bandra (Mumbai) and Karve Road (Pune). The results show that both the model configurations provide comparable skills in simulation of monthly and annual loads, although the skill of the meso-scale model is somewhat higher, especially at shorter time scales.


Sign in / Sign up

Export Citation Format

Share Document