scholarly journals Clinical computed tomography and surface-enhanced Raman scattering characterisation of ancient pigments

ACTA IMEKO ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 15
Author(s):  
Sveva Longo ◽  
Silvia Capuani ◽  
Francesca Granata ◽  
Fortunato Neri ◽  
Enza Fazio

<p class="Abstract">A systematic and complete chemical and physical characterisation of painted pigments on wood samples was carried out using multislice X-ray computed tomography (MSCT) and surface-enhanced Raman scattering (SERS) techniques. Inorganic and organic pigments present on the wooden tablets were differentiated by MSCT determinations of Hounsfield units, a semi-quantitative method for measuring X-ray attenuation that, in turn, offers an indirect estimation of a material’s density. However, the MSCT technique is not as reliable as traditional spectroscopic techniques for recognising and classifying organic pigments. Nevertheless, a strength of the MSCT approach was its ability to simultaneously provide a volumetric view of the wood and segment the layers of the specimen using suitable reconstruction methods such as is generally done for biomedical applications. Furthermore, the SERS technique made it possible to identify the type of material present in the pigments (for both inorganic or organic materials) with a high spatial resolution, even pigments in mixtures or those applied directly on the investigated wooden support. The combined MSCT and SERS data obtained through this systematic investigation constitutes the basis for the assembly of larger reference databases that will ultimately support the development of long-term conservation protocols.</p>

Nanomaterials ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 983 ◽  
Author(s):  
Peng Ji ◽  
Zhu Mao ◽  
Zhe Wang ◽  
Xiangxin Xue ◽  
Yu Zhang ◽  
...  

In this study, ZrO2 and Zn–ZrO2 nanoparticles (NPs) with a series of Zn ion doping amounts were synthesized by the sol-gel process and utilized as substrates for surface-enhanced Raman scattering (SERS). After absorbing the probing molecule 4–mercaptobenzoic acid, the SERS signal intensities of Zn–ZrO2 NPs were all greater than that of the pure ZrO2. The 1% Zn doping concentration ZrO2 NPs exhibited the highest SERS enhancement, with an enhancement factor (EF) value of up to 104. X-ray diffraction, X-ray photoelectron spectroscopy, Ultraviolet (UV) photoelectron spectrometer, UV–vis spectroscopy, Transmission Electron Microscope (TEM), and Raman spectroscopy were used to characterize the properties of Zn–ZrO2 NPs and explore the mechanisms behind the SERS phenomenon. The charge transfer (CT) process is considered to be responsible for the SERS performance of 4–MBA adsorbed on Zn–ZrO2. The results of this study demonstrate that an appropriate doping ratio of Zn ions can promote the charge transfer process between ZrO2 NPs and probe molecules and significantly improve the SERS properties of ZrO2 substrates.


Nanomaterials ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 2244
Author(s):  
Hung Ji Huang ◽  
Han-Wei Chang ◽  
Yang-Wei Lin ◽  
Shao-Yi Chuang ◽  
Yung-Sheng Lin ◽  
...  

Silver dendritic nanoforests (Ag-DNFs) on silicon (Ag-DNFs/Si) were synthesized through the fluoride-assisted Galvanic replacement reaction (FAGRR) method. The synthesized Ag-DNFs/Si were characterized by scanning electron microscopy, energy-dispersive X-ray spectrometry, inductively coupled plasma mass spectrometry (ICP-MS), reflection absorbance spectrometry, surface-enhanced Raman scattering spectrometry, and X-ray diffractometry. The Ag+ concentration in ICP-MS measurements indicated 1.033 mg/cm2 of deposited Ag synthesized for 200 min on Si substrate. The optical absorbance spectra indicated the induced surface plasmon resonance of Ag DNFs increased with the thickness of the Ag DNFs layer. Surface-enhanced Raman scattering measurement and a light-to-heat energy conversion test presented the superior plasmonic response of Ag-DNFs/Si for advanced applications. The Ag-DNFs/Si substrate exhibited high antibacterial activity against Escherichia coli and Staphylococcus aureus. The large surface area of the dense crystal Ag DNFs layer resulted in high antibacterial efficiency. The plasmonic response in the metal–crystal Ag DNFs under external light illumination can supply energy to enhance bacterial inhibition. High-efficiency plasmonic heating by the dense Ag DNFs can lead to localized bacterial inhibition. Thus, the Ag-DNFs/Si substrate has excellent potential for antibacterial applications.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Marilena Ricci ◽  
Cristiana Lofrumento ◽  
Emilio Castellucci ◽  
Maurizio Becucci

We review some new methods based on surface-enhanced Raman scattering (SERS) for the nondestructive/minimally invasive identification of organic colorants in objects whose value or function precludes sampling, such as historic and archeological textiles, paintings, and drawing. We discuss in detail the methodology we developed for the selective extraction and identification of anthraquinones and indigoids in the typical concentration used in textiles by means of an ecocompatible homogeneous nanostructured agar matrix. The extraction system was modulated according to the chemical properties of the target analyte by choosing appropriate reagents for the extraction and optimizing the extraction time. The system has been found to be extremely stable, easy to use and produce, easy to store, and at the same time able to be analyzed even after long time intervals, maintaining its enhancement properties unaltered, without the detriment of the extracted compound. Highly structured SERS band intensities have been obtained from the extracted dyes adopting laser light excitations at 514.5 and 785 nm of a micro-Raman setup. This analytical method has been found to be extremely safe for the analyzed substrates, thus being a promising procedure for the selective analysis and detection of molecules at low concentration in the field of artworks conservation.


Sign in / Sign up

Export Citation Format

Share Document