scholarly journals On pseudorandom number generators

ACTA IMEKO ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 128
Author(s):  
Daniel Chicayban Bastos ◽  
Luis Antonio Brasil Kowada ◽  
Raphael C. S. Machado

<p class="Abstract">Statistical sampling and simulations produced by algorithms require fast random number generators; however, true random number generators are often too slow for the purpose, so pseudorandom number generators are usually more suitable. But choosing and using a pseudorandom number generator is no simple task; most pseudorandom number generators fail statistical tests. Default pseudorandom number generators offered by programming languages usually do not offer sufficient statistical properties. Testing random number generators so as to choose one for a project is essential to know its limitations and decide whether the choice fits the project’s objectives. However, this study presents a reproducible experiment that demonstrates that, despite all the contributions it made when it was first published, the popular NIST SP 800-22 statistical test suite as implemented in the software package is inadequate for testing generators.</p>

In this chapter, the author considers existing methods and means of forming pseudo-random sequences of numbers and also are described the main characteristics of random and pseudorandom sequences of numbers. The main theoretical aspects of the construction of pseudo-random number generators are considered. Classification of pseudorandom number generators is presented. The structures and models of the most popular pseudo-random number generators are considered, the main characteristics of generators that affect the quality of the formation of pseudorandom bit sequences are described. The models of the basic mathematical generators of pseudo-random numbers are considered, and also the principles of building hardware generators are presented.


Author(s):  
Babacar Alasane Ndaw ◽  
Ousmane Ndiaye ◽  
Mamadou Sanghar´e ◽  
Cheikh Thi´ecoumba Gueye

One family of the cryptographic primitives is random Number Generators (RNG) which have several applications in cryptography such that password generation, nonce generation, Initialisation vector for Stream Cipher, keystream. Recently they are also used to randomise encryption and signature schemes. A pseudo-random number generator (PRNG) or a pseudo-random bit generator (PRBG) is a deterministic algorithm that produces numbers whose distribution is on the one hand indistinguishable from uniform ie. that the probabilities of appearance of the different symbols are equal and that these appearances are all independent. On the other hand, the next output of a PRNG must be unpredictable from all its previous outputs. Indeed, A set of statistical tests for randomness has been proposed in the literature and by NIST to evaluate the security of random(pseudo) bit or block. Unfortunately there are non-random binary streams that pass these standardized tests. In this pap er, as outcome, we intro duce on the one hand a new statistical test in a static contextcalled attendance’s law and on the other hand a distinguisher based on this new attendance’s law.    


In this chapter, the author considers the main theoretical solutions for the creation of pseudo-random number generators based on one-dimensional cellular automata. A Wolfram generator is described on the basis of rule 30. The main characteristics of the Wolfram generator is presented. The analysis of hybrid pseudo-random number generators based on cellular automata is carried out. Models of such generators and their realization with various forms of neighborhoods are presented. Also in the chapter is presented the analysis of the basic structures and characteristics of pseudo-random number generators using additional sources of pseudo-random numbers. As such additional sources the LFSR is used.


Author(s):  
Frederick James ◽  
Lorenzo Moneta

AbstractThis is a review of pseudorandom number generators (RNG’s) of the highest quality, suitable for use in the most demanding Monte Carlo calculations. All the RNG’s we recommend here are based on the Kolmogorov–Anosov theory of mixing in classical mechanical systems, which guarantees under certain conditions and in certain asymptotic limits, that points on the trajectories of these systems can be used to produce random number sequences of exceptional quality. We outline this theory of mixing and establish criteria for deciding which RNG’s are sufficiently good approximations to the ideal mathematical systems that guarantee highest quality. The well-known RANLUX (at highest luxury level) and its recent variant RANLUX++ are seen to meet our criteria, and some of the proposed versions of MIXMAX can be modified easily to meet the same criteria.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
I-Te Chen

Random numbers are very useful in simulation, chaos theory, game theory, information theory, pattern recognition, probability theory, quantum mechanics, statistics, and statistical mechanics. The random numbers are especially helpful in cryptography. In this work, the proposed random number generators come from white noise of audio and video (A/V) sources which are extracted from high-resolution IPCAM, WEBCAM, and MPEG-1 video files. The proposed generator applied on video sources from IPCAM and WEBCAM with microphone would be the true random number generator and the pseudorandom number generator when applied on video sources from MPEG-1 video file. In addition, when applying NIST SP 800-22 Rev.1a 15 statistics tests on the random numbers generated from the proposed generator, around 98% random numbers can pass 15 statistical tests. Furthermore, the audio and video sources can be found easily; hence, the proposed generator is a qualified, convenient, and efficient random number generator.


2019 ◽  
Vol 8 (2) ◽  
pp. 1-5
Author(s):  
Rajashree Chaurasia

Most programming languages have in-built functions for the sole purpose of generating pseudo-random numbers. This manuscript is aimed at analyzing the appropriateness of some of these in-built functions for some basic goodness-of-fit statistical tests for random number generators. The document is divided into four sections. The first section gives a broad introduction about randomness and the methods of generation of pseudo-random numbers. Section two discusses the statistical tests that were employed for testing the built-in library functions for random number generation. This section is followed by an analysis of the data collected for the various statistics in the third section, and lastly, the fourth section presents the results of the data analysis.


Information ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 19
Author(s):  
Alexey Semenkov ◽  
Dmitry Bragin ◽  
Yakov Usoltsev ◽  
Anton Konev ◽  
Evgeny Kostuchenko

Modern facial recognition algorithms make it possible to identify system users by their appearance with a high level of accuracy. In such cases, an image of the user’s face is converted to parameters that later are used in a recognition process. On the other hand, the obtained parameters can be used as data for pseudo-random number generators. However, the closeness of the sequence generated by such a generator to a truly random one is questionable. This paper proposes a system which is able to authenticate users by their face, and generate pseudo-random values based on the facial image that will later serve to generate an encryption key. The generator of a random value was tested with the NIST Statistical Test Suite. The subsystem of image recognition was also tested under various conditions of taking the image. The test results of the random value generator show a satisfactory level of randomness, i.e., an average of 0.47 random generation (NIST test), with 95% accuracy of the system as a whole.


2021 ◽  
Vol 13 (2) ◽  
pp. 10-18
Author(s):  
Botond L. Márton ◽  
Dóra Istenes ◽  
László Bacsárdi

Random numbers are of vital importance in today’s world and used for example in many cryptographical protocols to secure the communication over the internet. The generators producing these numbers are Pseudo Random Number Generators (PRNGs) or True Random Number Generators (TRNGs). A subclass of TRNGs are the Quantum based Random Number Generators (QRNGs) whose generation processes are based on quantum phenomena. However, the achievable quality of the numbers generated from a practical implementation can differ from the theoretically possible. To ease this negative effect post-processing can be used, which contains the use of extractors. They extract as much entropy as possible from the original source and produce a new output with better properties. The quality and the different properties of a given output can be measured with the help of statistical tests. In our work we examined the effect of different extractors on two QRNG outputs and found that witg the right extractor we can improve their quality.


2014 ◽  
Vol 573 ◽  
pp. 181-186 ◽  
Author(s):  
G.P. Ramesh ◽  
A. Rajan

—Field-programmable gate array (FPGA) optimized random number generators (RNGs) are more resource-efficient than software-optimized RNGs because they can take advantage of bitwise operations and FPGA-specific features. A random number generator (RNG) is a computational or physical device designed to generate a sequence of numbers or symbols that lack any pattern, i.e. appear random. The many applications of randomness have led to the development of several different methods for generating random data. Several computational methods for random number generation exist, but often fall short of the goal of true randomness though they may meet, with varying success, some of the statistical tests for randomness intended to measure how unpredictable their results are (that is, to what degree their patterns are discernible).LUT-SR Family of Uniform Random Number Generators are able to handle randomness only based on seeds that is loaded in the look up table. To make random generation efficient, we propose new approach based on SRAM storage device.Keywords: RNG, LFSR, SRAM


Sign in / Sign up

Export Citation Format

Share Document