scholarly journals Enhancing the operational efficiency of quantum random number generators

2021 ◽  
Vol 13 (2) ◽  
pp. 10-18
Author(s):  
Botond L. Márton ◽  
Dóra Istenes ◽  
László Bacsárdi

Random numbers are of vital importance in today’s world and used for example in many cryptographical protocols to secure the communication over the internet. The generators producing these numbers are Pseudo Random Number Generators (PRNGs) or True Random Number Generators (TRNGs). A subclass of TRNGs are the Quantum based Random Number Generators (QRNGs) whose generation processes are based on quantum phenomena. However, the achievable quality of the numbers generated from a practical implementation can differ from the theoretically possible. To ease this negative effect post-processing can be used, which contains the use of extractors. They extract as much entropy as possible from the original source and produce a new output with better properties. The quality and the different properties of a given output can be measured with the help of statistical tests. In our work we examined the effect of different extractors on two QRNG outputs and found that witg the right extractor we can improve their quality.

In this chapter, the author considers existing methods and means of forming pseudo-random sequences of numbers and also are described the main characteristics of random and pseudorandom sequences of numbers. The main theoretical aspects of the construction of pseudo-random number generators are considered. Classification of pseudorandom number generators is presented. The structures and models of the most popular pseudo-random number generators are considered, the main characteristics of generators that affect the quality of the formation of pseudorandom bit sequences are described. The models of the basic mathematical generators of pseudo-random numbers are considered, and also the principles of building hardware generators are presented.


Author(s):  
Kentaro Tamura ◽  
Yutaka Shikano

Abstract A cloud quantum computer is similar to a random number generator in that its physical mechanism is inaccessible to its users. In this respect, a cloud quantum computer is a black box. In both devices, its users decide the device condition from the output. A framework to achieve this exists in the field of random number generation in the form of statistical tests for random number generators. In the present study, we generated random numbers on a 20-qubit cloud quantum computer and evaluated the condition and stability of its qubits using statistical tests for random number generators. As a result, we observed that some qubits were more biased than others. Statistical tests for random number generators may provide a simple indicator of qubit condition and stability, enabling users to decide for themselves which qubits inside a cloud quantum computer to use.


2020 ◽  
Author(s):  
Scott Stoller

Random numbers are an important, but often overlooked part of the modern computing environment. They are used everywhere around us for a variety of purposes, from simple decision making in video games such as a coin toss, to securing financial transactions and encrypting confidential communications. They are even useful for gambling and the lottery. Random numbers are generated in many ways. Pseudo random number generators (PRNGs) generate numbers based on a formula. True random number generators (TRNGs) capture entropy from the environment to generate randomness. As our society and our devices become more connected in the digital world, it is important to develop new ways to generate truly random numbers in order to secure communications and connected devices. In this work a novel memristor-based True Random Number Generator is designed and a physical implementation is fabricated and tested using a W-based self-directed channel (SDC) memristor. The circuit was initially designed and prototyped on a breadboard. A custom Printed Circuit Board (PCB) was fabricated for the final circuit design and testing of the novel memristor-based TRNG. The National Institute of Standards and Technology (NIST) Statistical Test Suite (STS) was used to check the output of the TRNG for randomness. The TRNG was demonstrated to pass 13 statistical tests out of the 15 in the STS.


2021 ◽  
Author(s):  
Daniel Henrique Pereira

In this paper was presented Itamaracá, a novel simple way to generate pseudo random numbers. In general vision we can say that Itamaracá tends to pass in some statistical tests like frequency, chi square, autocorrelation, run sequence and run test. As an effect to comparison also was taking into account the results of the function R and Between by Microsoft Excel and true random numbers by Random Org analyzed its distinctive characteristics as well as with the proposal model. In this sense, the goal of this study is contributing to growing the existing Pseudo Random Number Generators (PRNGs) portfolio.


2021 ◽  
Author(s):  
Daniel Henrique Pereira

In this paper was presented Itamaracá, a novel simple way to generate pseudo random numbers. In general vision we can say that Itamaracá tends to pass in some statistical tests like frequency, chi square, autocorrelation, run sequence and run test. As an effect to comparison also was taking into account the results of the function R and Between by Microsoft Excel and true random numbers by Random Org analyzed its distinctive characteristics as well as with the proposal model. In this sense, the goal of this study is contributing to growing the existing Pseudo Random Number Generators (PRNGs) portfolio.


Author(s):  
Maksim Iavich ◽  
◽  
Tamari Kuchukhidze ◽  
Sergiy Gnatyuk ◽  
Andriy Fesenko

Random numbers have many uses, but finding true randomness is incredibly difficult. Therefore, quantum mechanics is used, using the essentially unpredictable behavior of a photon, to generate truly random numbers that form the basis of many modern cryptographic protocols. It is essential to trust cryptographic random number generators to generate only true random numbers. This is why certification methods are needed which will check both the performance of our device and the quality of the random bits generated. Self-testing as well as device independent quantum random number generation methods are analyzed in the paper. The advantages and disadvantages of both methods are identified. The model of a novel semi self-testing certification method for quantum random number generators is offered in the paper. This method combines different types of certification approaches and is rather secure and efficient. The method is very important for computer science, because it combines the best features from selftesting and device independent methods. It can be used, when the random numbers’ entropy depends on the device and when it does not. In the related researches, these approaches are offered to be used separately, depending on the random number generator. The offered novel certification technology can be properly used, when the device is compromised or spoiled. The technology can successfully detect unintended irregularities, operational problems, abnormalities and problems in the randomization process. The offered mythology assists to eliminate problems related to physical devices. The offered system has the higher certification randomness security and is faster than self-testing approaches. The method is rather efficient because it implements the different certification approaches in the parallel threads. The offered techniques make the offered research must more efficient than the other existing approaches. The corresponding programming simulation is implemented by means of the simulation techniques.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Marcin M. Jacak ◽  
Piotr Jóźwiak ◽  
Jakub Niemczuk ◽  
Janusz E. Jacak

AbstractGeneration of random numbers is a central problem for many applications in the field of information processing, including, e.g., cryptography, in classical and quantum regime, but also mathematical modeling, Monte Carlo methods, gambling and many others. Both, the quality of the randomness and efficiency of the random numbers generation process are crucial for the most of these applications. Software produced pseudorandom bit sequences, though sufficiently quick, do not fulfill required randomness quality demands. Hence, the physical hardware methods are intensively developed to generate truly random number sequences for information processing and electronic security application. In the present paper we discuss the idea of the quantum random number generators. We also present a variety of tests utilized to assess the quality of randomness of generated bit sequences. In the experimental part we apply such tests to assess and compare two quantum random number generators, PQ4000KSI (of company ComScire US) and JUR01 (constructed in Wroclaw University of Science and Technology upon the project of The National Center for Research and Development) as well as a pseudorandom generator from the Mathematica Wolfram package. Finally, we present our new prototype of fully operative miniaturized quantum random generator JUR02 producing a random bit sequence with velocity of 1 Mb/s, which successfully passed standard tests of randomness quality (like NIST and Dieharder tests). We also shortly discuss our former concept of an entanglement-based quantum random number generator protocol with unconditionally secure public randomness verification.


2020 ◽  
Vol XXIII (1) ◽  
pp. 248-252
Author(s):  
Veronica Cornaciu

The generation of random numbers is a important topic in cryptography. Random number generators are bradly divided into two categories: random number generators(RNGs) and pseudo-random number generators(PRNGs). If the PRNGs werw intensively studied in the specialized literature, many such generators being built and analyzed, the topic of RNGs did not capture the researchers atention so much. Candidates in this first category generate nondeterministic sequences and are often based on physical reactions, such as radioactive degradation or mouse movement. A special category of generators is the one that combines the two categories, namely, the category of hybrid generators (HRGs). The purpose of this paper is to study in detail the category of hybrid generators and to provide a detailed analysis of the results of statistical tests, security , portability and how to improve some of the generators of this category.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
I-Te Chen

Random numbers are very useful in simulation, chaos theory, game theory, information theory, pattern recognition, probability theory, quantum mechanics, statistics, and statistical mechanics. The random numbers are especially helpful in cryptography. In this work, the proposed random number generators come from white noise of audio and video (A/V) sources which are extracted from high-resolution IPCAM, WEBCAM, and MPEG-1 video files. The proposed generator applied on video sources from IPCAM and WEBCAM with microphone would be the true random number generator and the pseudorandom number generator when applied on video sources from MPEG-1 video file. In addition, when applying NIST SP 800-22 Rev.1a 15 statistics tests on the random numbers generated from the proposed generator, around 98% random numbers can pass 15 statistical tests. Furthermore, the audio and video sources can be found easily; hence, the proposed generator is a qualified, convenient, and efficient random number generator.


Sign in / Sign up

Export Citation Format

Share Document