Differentiated plant-defense strategies: herbivore community dynamics affect plant-herbivore interactions

2021 ◽  
Author(s):  
Cynthia Perkovich
F1000Research ◽  
2017 ◽  
Vol 6 ◽  
pp. 119 ◽  
Author(s):  
Deron E. Burkepile ◽  
John D. Parker

Plant-herbivore interactions shape community dynamics across marine, freshwater, and terrestrial habitats. From amphipods to elephants and from algae to trees, plant-herbivore relationships are the crucial link generating animal biomass (and human societies) from mere sunlight. These interactions are, thus, pivotal to understanding the ecology and evolution of virtually any ecosystem. Here, we briefly highlight recent advances in four areas of plant-herbivore interactions: (1) plant defense theory, (2) herbivore diversity and ecosystem function, (3) predation risk aversion and herbivory, and (4) how a changing climate impacts plant-herbivore interactions. Recent advances in plant defense theory, for example, highlight how plant life history and defense traits affect and are affected by multiple drivers, including enemy pressure, resource availability, and the local plant neighborhood, resulting in trait-mediated feedback loops linking trophic interactions with ecosystem nutrient dynamics. Similarly, although the positive effect of consumer diversity on ecosystem function has long been recognized, recent advances using DNA barcoding to elucidate diet, and Global Positioning System/remote sensing to determine habitat selection and impact, have shown that herbivore communities are probably even more functionally diverse than currently realized. Moreover, although most diversity-function studies continue to emphasize plant diversity, herbivore diversity may have even stronger impacts on ecosystem multifunctionality. Recent studies also highlight the role of risk in plant-herbivore interactions, and risk-driven trophic cascades have emerged as landscape-scale patterns in a variety of ecosystems. Perhaps not surprisingly, many plant-herbivore interactions are currently being altered by climate change, which affects plant growth rates and resource allocation, expression of chemical defenses, plant phenology, and herbivore metabolism and behavior. Finally, we conclude by noting that although the field is advancing rapidly, the world is changing even more rapidly, challenging our ability to manage these pivotal links in the food chain.


2021 ◽  
Author(s):  
Meret Huber ◽  
Thomas Roder ◽  
Sandra Irmisch ◽  
Alexander Riedel ◽  
Saskia Gablenz ◽  
...  

Gut enzymes can metabolize plant defense metabolites and thereby affect the growth and fitness of insect herbivores. Whether these enzymes also influence herbivore behavior and feeding preference is largely unknown. We studied the metabolization of taraxinic acid β-D-glucopyranosyl ester (TA-G), a sesquiterpene lactone of the common dandelion (Taraxacum officinale) that deters its major root herbivore, the common cockchafer larva (Melolontha melolontha). We demonstrate that TA-G is rapidly deglycosylated and conjugated to glutathione in the insect gut. A broad-spectrum M. melolontha β-glucosidase, Mm_bGlc17, is sufficient and necessary for TA-G deglycosylation. Using plants and insect RNA interference, we show that Mm_bGlc17 reduces TA-G toxicity. Furthermore, Mm_bGlc17 is required for the preference of M. melolontha larvae for TA-G deficient plants. Thus, herbivore metabolism modulates both the toxicity and deterrence of a plant defense metabolite. Our work illustrates the multifacteted roles of insect digestive enzymes as mediators of plant-herbivore interactions.


Author(s):  
Denise Dealing

The alpine provides a tremendous opportunity for studying plant-herbivore interactions at the population, community, and ecosystem levels. For herbivores, variations in topography and microclimate result in a relatively large amount of spatial variation in plant communities within short distances (chapter 6). A large community of herbivores, from nematodes to grasshoppers to elk, occurs on Niwot Ridge. Furthermore, given the low rates of nutrient availability in alpine soils (Fisk and Schmidt 1995; chapter 12) combined with the slow-growing perennial habit of the vegetation, alpine plants should, in theory, invest heavily in defense against herbivores (Coley et al. 1985). The goal of this chapter is to provide: (1) a summary of the feeding behaviors of the herbivores on Niwot Ridge, (2) information on the nutritional and secondary chemistry of plants on Niwot Ridge as it relates to herbivory, and (3) a review of hypotheses on community dynamics of herbivores and plants relevant to the alpine. The ultimate objective is to provide a synthesis of information that will stimulate interest in alpine tundra as a system for studying the dynamics of plant-herbivore interactions at all levels of ecological organization. The flora of Niwot Ridge has been divided into six communities (May and Webber 1982; chapter 6). Regardless of community association, nearly all of the plant species occurring on the ridge are perennials and several are very long lived (May and Webber 1982). Communities can change across small spatial scales (meters), and community origin and maintenance are believed to be largely determined by abiotic factors (Walker et al. 1994; chapter 6). However, several studies suggest that biotic factors such as herbivory may have a significant impact on plant community dynamics (Huntly et al. 1986; Davies 1994). There is significant variation in the nutritional composition of plants on Niwot Ridge. Generally, and in the absence of plant secondary compounds, species that are high in nitrogen and low in fiber are presumed to be the most desirable as forage. Based solely on these nutritional variables, the clover Trifolium parryi is hypothesized to be one of the more-preferred forages, whereas alpine sandwort, Minuartia obtusiloba, should be one of the less-preferred food items.


2018 ◽  
Vol 115 (20) ◽  
pp. 5199-5204 ◽  
Author(s):  
Ching-Wen Tan ◽  
Michelle Peiffer ◽  
Kelli Hoover ◽  
Cristina Rosa ◽  
Flor E. Acevedo ◽  
...  

Obligate symbioses occur when organisms require symbiotic relationships to survive. Some parasitic wasps of caterpillars possess obligate mutualistic viruses called “polydnaviruses.” Along with eggs, wasps inject polydnavirus inside their caterpillar hosts where the hatching larvae develop inside the caterpillar. Polydnaviruses suppress the immune systems of their caterpillar hosts, which enables egg hatch and wasp larval development. It is unknown whether polydnaviruses also manipulate the salivary proteins of the caterpillar, which may affect the elicitation of plant defenses during feeding by the caterpillar. Here, we show that a polydnavirus of the parasitoid Microplitis croceipes, and not the parasitoid larva itself, drives the regulation of salivary enzymes of the caterpillar Helicoverpa zea that are known to elicit tomato plant-defense responses to herbivores. The polydnavirus suppresses glucose oxidase, which is a primary plant-defense elicitor in the saliva of the H. zea caterpillar. By suppressing plant defenses, the polydnavirus allows the caterpillar to grow at a faster rate, thus improving the host suitability for the parasitoid. Remarkably, polydnaviruses manipulate the phenotypes of the wasp, caterpillar, and host plant, demonstrating that polydnaviruses play far more prominent roles in shaping plant–herbivore interactions than ever considered.


Cells ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2219
Author(s):  
Akanksha Gandhi ◽  
Rupesh Kariyat ◽  
Amaravadhi Harikishore ◽  
Marzieh Ayati ◽  
Anirban Bhunia ◽  
...  

Plants and insect herbivores are in a relentless battle to outwit each other. Plants have evolved various strategies to detect herbivores and mount an effective defense system against them. These defenses include physical and structural barriers such as spines, trichomes, cuticle, or chemical compounds, including secondary metabolites such as phenolics and terpenes. Plants perceive herbivory by both mechanical and chemical means. Mechanical sensing can occur through the perception of insect biting, piercing, or chewing, while chemical signaling occurs through the perception of various herbivore-derived compounds such as oral secretions (OS) or regurgitant, insect excreta (frass), or oviposition fluids. Interestingly, ion channels or transporters are the first responders for the perception of these mechanical and chemical cues. These transmembrane pore proteins can play an important role in plant defense through the induction of early signaling components such as plasma transmembrane potential (Vm) fluctuation, intracellular calcium (Ca2+), and reactive oxygen species (ROS) generation, followed by defense gene expression, and, ultimately, plant defense responses. In recent years, studies on early plant defense signaling in response to herbivory have been gaining momentum with the application of genetically encoded GFP-based sensors for real-time monitoring of early signaling events and genetic tools to manipulate ion channels involved in plant-herbivore interactions. In this review, we provide an update on recent developments and advances on early signaling events in plant-herbivore interactions, with an emphasis on the role of ion channels in early plant defense signaling.


2017 ◽  
Vol 106 (1) ◽  
pp. 347-356 ◽  
Author(s):  
Wei Huang ◽  
Elias Zwimpfer ◽  
Maxime R. Hervé ◽  
Zoe Bont ◽  
Matthias Erb

Author(s):  
Maite Fernández de Bobadilla ◽  
Alessia Vitiello ◽  
Matthias Erb ◽  
Erik H. Poelman

2008 ◽  
Vol 11 (8) ◽  
pp. 841-851 ◽  
Author(s):  
Ian Kaplan ◽  
Rayko Halitschke ◽  
Andre Kessler ◽  
Brian J. Rehill ◽  
Sandra Sardanelli ◽  
...  

2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Medha L. Upasani ◽  
Bhakti M. Limaye ◽  
Gayatri S. Gurjar ◽  
Sunitha M. Kasibhatla ◽  
Rajendra R. Joshi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document