scholarly journals Assessment of forecast quality of mesoscale convective systems in Western Urals region using WRF model and MODIS satellite data

Author(s):  
A.N. Shikhov ◽  
◽  
A.V. Bykov ◽  
2016 ◽  
Author(s):  
Antonio Parodi ◽  
Luca Ferraris ◽  
William Gallus ◽  
Maurizio Maugeri ◽  
Luca Molini ◽  
...  

Abstract. Highly localized and persistent back-building mesoscale convective systems represent one of the most dangerous flash-flood producing storms in the north-western Mediterranean area. Substantial warming of the Mediterranean Sea in recent decades raises concerns over possible increases in frequency or intensity of these types of events as increased atmospheric temperatures generally support increases in water vapor content. However, analyses of the historical record do not provide a univocal answer, but these are likely affected by a lack of detailed observations for older events. In the present study, 20th Century Reanalysis Project initial and boundary condition data in ensemble mode are used to address the feasibility of performing cloud-resolving simulations with 1 km horizontal grid spacing of a historic extreme event that occurred over Liguria: The San Fruttuoso case of 1915. The proposed approach focuses on the ensemble Weather Research and Forecasting (WRF) model runs that show strong convergence over the Liguria sea, as these runs are the ones most likely to best simulate the event. It is found that these WRF runs generally do show wind and precipitation fields that are consistent with the occurrence of highly localized and persistent back-building mesoscale convective systems, although precipitation peak amounts are underestimated. Systematic small north-westward position errors with regard to the heaviest rain and strongest convergence areas imply that the Reanalysis members may not be adequately representing the amount of cool air over the Po Plain outflowing into the Liguria Sea through the Apennines gap. Regarding the role of historical data sources, this study shows that in addition to Reanalysis products, unconventional data, such as historical meteorological bulletins newspapers and even photographs can be very valuable sources of knowledge in the reconstruction of past extreme events.


2012 ◽  
Vol 140 (1) ◽  
pp. 100-120 ◽  
Author(s):  
Xinyan Lu ◽  
Kevin K. W. Cheung ◽  
Yihong Duan

Abstract The effects of multiple mesoscale convective systems (MCSs) on the formation of Typhoon Ketsana (2003) are analyzed in this study. Numerical simulations using the Weather Research and Forecasting (WRF) model with assimilation of Quick Scatterometer (QuikSCAT) and Special Sensor Microwave Imager (SSM/I) oceanic winds and total precipitable water are performed. The WRF model simulates well the large-scale features, the convective episodes associated with the MCSs and their periods of development, and the formation time and location of Ketsana. With the successive occurrence of MCSs, midlevel average relative vorticity is strengthened through generation of mesoscale convective vortices (MCVs) mainly via the vertical stretching mechanism. Scale separation shows that the activity of the vortical hot tower (VHT)-type meso-γ-scale vortices correlated well with the development of the MCSs. These VHTs have large values of positive relative vorticity induced by intense low-level convergence, and thus play an important role in the low-level vortex enhancement with aggregation of VHTs as one of the possible mechanisms. Four sensitivity experiments are performed to analyze the possible different roles of the MCSs during the formation of Ketsana by modifying the vertical relative humidity profile in each MCS and consequently the strength of convection within. The results show that the development of an MCS depends substantially on that of the prior ones through remoistening of the midtroposphere, and thus leading to different scenarios of system intensification during the tropical cyclone (TC) formation. The earlier MCSs are responsible for the first stage vortex enhancement, and depending on the location can affect quite largely the simulated formation location. The extreme convection within the last MCS before formation largely determines the formation time.


2017 ◽  
Vol 74 (2) ◽  
pp. 333-351 ◽  
Author(s):  
Adam V. Rydbeck ◽  
Eric D. Maloney ◽  
Ghassan J. Alaka

Abstract The in situ generation of easterly waves (EWs) in the east Pacific (EPAC) is investigated using the Weather Research and Forecasting (WRF) Model. The sensitivity of the model to the suppression of EW forcing by locally generated convective disturbances is examined. Specifically, local forcing of EWs is removed by reducing the terrain height in portions of Central and South America to suppress robust sources of diurnal convective variability, most notably in the Panama Bight. High terrain contributes to the initiation of mesoscale convective systems in the early morning that propagate westward into the EPAC warm pool. When such mesoscale convective systems are suppressed in the model, EW variance is significantly reduced. This result suggests that EPAC EWs can be generated locally in association with higher-frequency convective disturbances, and these disturbances are determined to be an important source of EPAC EW variability. However, EPAC EW variability is not completely eliminated in such sensitivity experiments, indicating the importance for other sources of EW forcing, namely, EWs propagating into the EPAC from West Africa. Examination of the EW vorticity budget in the model suggests that nascent waves are zonally elongated and amplified by horizontal advection and vertical stretching of vorticity. Changes in the mean state between the control run and simulation with reduced terrain height also complicate interpretation of the results.


2021 ◽  
Vol 256 ◽  
pp. 105580
Author(s):  
Dongxia Liu ◽  
Mengyu Sun ◽  
Debin Su ◽  
Wenjing Xu ◽  
Han Yu ◽  
...  

2006 ◽  
Vol 21 (2) ◽  
pp. 125-148 ◽  
Author(s):  
Hyung Woo Kim ◽  
Dong Kyou Lee

Abstract A heavy rainfall event induced by mesoscale convective systems (MCSs) occurred over the middle Korean Peninsula from 25 to 27 July 1996. This heavy rainfall caused a large loss of life and property damage as a result of flash floods and landslides. An observational study was conducted using Weather Surveillance Radar-1988 Doppler (WSR-88D) data from 0930 UTC 26 July to 0303 UTC 27 July 1996. Dominant synoptic features in this case had many similarities to those in previous studies, such as the presence of a quasi-stationary frontal system, a weak upper-level trough, sufficient moisture transportation by a low-level jet from a tropical storm landfall, strong potential and convective instability, and strong vertical wind shear. The thermodynamic characteristics and wind shear presented favorable conditions for a heavy rainfall occurrence. The early convective cells in the MCSs initiated over the coastal area, facilitated by the mesoscale boundaries of the land–sea contrast, rain–no rain regions, saturated–unsaturated soils, and steep horizontal pressure and thermal gradients. Two MCSs passed through the heavy rainfall regions during the investigation period. The first MCS initiated at 1000 UTC 26 July and had the characteristics of a supercell storm with small amounts of precipitation, the appearance of a mesocyclone with tilting storm, a rear-inflow jet at the midlevel of the storm, and fast forward propagation. The second MCS initiated over the upstream area of the first MCS at 1800 UTC 26 July and had the characteristics of a multicell storm, such as a broken areal-type squall line, slow or quasi-stationary backward propagation, heavy rainfall in a concentrated area due to the merging of the convective storms, and a stagnated cluster system. These systems merged and stagnated because their movement was blocked by the Taebaek Mountain Range, and they continued to develop because of the vertical wind shear resulting from a low-level easterly inflow.


Sign in / Sign up

Export Citation Format

Share Document