Roofs and Walls of Buildings as a Media for Converting Solar Thermal Energy into Electrical Energy

2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Rifky ◽  
Agus Fikri ◽  
Mohammad Mujirudin

Solar energy can be used by buildings. Parts of the building can convert solar thermal energy into electrical energy.The roof and walls are the parts of the building that receive the most sunlight. Therefore, the roof and walls of the building can supply electricity with the thermoelectric generator. The aim of this research is to get the maximum possible output power from the thermoelectric generator system. From the output power produced, it will be possible to find the feasibility of a thermoelectric generator to be used as an energy source for the roof and walls of the building model. The building model is designed simply where the roof and walls can be located a thermoelectric generator system, which consists of a heat sink, a thermoelectric circuit and a cooling system. The heat sink used is aluminum. The thermoelectric circuit consists of 15 sets which are assembled in a series connection arrangement. The cooling system used is active cooling, where water as the cooling fluid circulates continuously during the operation of the system. The thermoelectric hot side temperature is obtained from solar thermal radiation through a heat sink. Meanwhile, the temperature on the cold side of the thermoelectric is the result of the effect of the cooling system that is attached. The temperature difference between the hot and cold sides of the thermoelectric produces a system output in the form of electric voltage and electric current. This study obtain that the generator system on the roof with a temperature difference of 8.90 oC on the hot-cold side produces a power of 1.953 watts. While the generator system on the wall with a temperature difference between the hot-cold side of 1.80 oC produces a power of 0.030 watts.

2021 ◽  
Vol 6 (1) ◽  
pp. 60-65
Author(s):  
Rifky Rifky ◽  
Agus Fikri ◽  
Mohammad Mujirudin

AbstrakSalah satu pemanfaatan energi surya adalah mengkonversi energi termalnya menjadi energi listrik. Konvertor yang digunakan adalah generator termoelektrik. Panas matahari diterima sisi panas termoelektrik melalui penyerap panas, sedangkan sisi dinginnya dilekatkan sistem pendingin aktif dengan fluida air. Penelitian ini memiliki tujuan untuk mendapatkan daya luaran semaksimal mungkin dari sistem generator termoelektrik yang mengkonversi energi termal surya menjadi energi listrik pada model bangunan. Metode penelitian yang digunakan adalah eksperimental, yang didahului dengan perancangan dan pembuatan alat penelitian. Alat penelitian berbentuk sistem generator yang diletakkan di atap model bangunan. Sistem generator terdiri dari penyerap panas aluminium, termoelektrik yang terdiri dari 15 set, dan sistem pendingin yang menggunakan fluida air bersirkulasi. Pengujian terhadap sistem dengan cara mengoperasikannya sambil melakukan pengamatan dan pengambilan data. Variabel dalam penelitian ini adalah susunan sambungan generator termoelektrik (seri dan paralel). Sementara data masukan adalah kelembaban udara, kecepatan angin, temperatur, dan aliran alir; sedangkan data luaran adalah tegangan listrik dan arus listrik. Hasil penelitian mendapatkan bahwa dengan perbedaan temperatur 12,8oC menghasilkan daya maksimum sebesar 2,214 watt dari susunan seri sambungan termolektrik. Sementara dengan perbedaan temperatur 15,4oC mendapatkan daya maksimum sebesar 0.101 watt dari susunan paralel sambungan termoelektrik.  Kata kunci: energi, surya, termoelektrik, atap, daya AbstractOne of the uses of solar energy is converting its thermal energy into electrical energy. The converter used is a thermoelectric generator. The sun's heat is received by the thermoelectric hot side through the heat sink, while the cold side is attached by an active cooling system with water fluid. This study aims to obtain the maximum possible output power from a thermoelectric generator system that converts solar thermal energy into electrical energy in the building model. The research method used is experimental, which is preceded by the design and manufacture of research tools. The research tool is in the form of a generator system that is placed on the roof of the building model. The generator system consists of an aluminum heat sink, a thermoelectric consisting of 15 sets, and a cooling system that uses circulating water fluid. Testing the system by operating it while observing and collecting data. The variable in this research is the connection arrangement of the thermoelectric generator (series and parallel). While the input data are humidity, wind speed, temperature, and flow flow; while the output data is electric voltage and electric current. The results showed that with a temperature difference of 12.8°C the maximum power was 2,214 watts from the series arrangement of the thermoelectric junction. Meanwhile, with a temperature difference of 15.4°C, the maximum power is 0.101 watts from the parallel arrangement of the thermoelectric connection. Keywords: energy, solar, thermoelectric, roof, power


Author(s):  
Rajeevan Ratnanandan ◽  
Jorge E. González

The paper presents a study of the performance of an active solar thermal heating and cooling system for small buildings. The work is motivated by the need for finding sustainable alternatives for building applications that are climate adaptable. The energy demand for heating and cooling needs in residential and light commercial buildings in mid-latitudes represent more than 50% of the energy consumed annually by these buildings. Solar thermal energy represents an untapped opportunity to address this challenge with sustainable solutions. Direct heating could be a source for space heating and hot water, and for heat operated cooling systems to provide space cooling. However, a key limitation in mainstreaming solar thermal for heating and cooling has been the size of thermal storage to implement related technologies. We address this issue by coupling a Phase Change Material (PCM) with an adsorption chiller and a radiant flooring system for year round solar thermal energy utilization in Northern climates. The adsorption chiller allows for chill water production driven by low temperature solar thermal energy for summer cooling, and low temperature radiant heating provides for space heating in winter conditions, while hot water demand is supplied year round. These active systems are operated by high performance solar thermal collectors. The PCM has been selected to match temperatures requirements of the adsorption chiller, and the tank was designed to provide three levels of temperatures for all applications; cooling, heating, and hot water. The material selection is paraffin sandwiched with a graphite matrix to increase the conductivity. The specific objective of the preset work is to provide a system optimization of this active system. The system is represented by a series of mathematical models for each component; PCM tank with heat exchangers, the adsorption machine, the radiant floor, and the solar thermal collectors (Evacuated tubular collectors). The PCM modeling allows for sensible heating, phase change process, and superheating. Parametric simulations are conducted for a defined small building in different locations in US with the objective of defining design parameters for; optimal solar collector array, sizing of the PCM tank, and performance of the adsorption machine and radiant heating system. The monthly and annual solar fractions of the system are also reported.


Author(s):  
Krittanon Prathepha ◽  
Worawat Sa-ngiamvibool

Fire hazard has destroyed humanity creations. Fire detectors have been developed by using different techniques. Thermoelectric generator (TEG) is a part of energy harvesting which is able to convert heat into electricity because of temperature difference between hot and cold side of thermoelectric device (TE). Different materials are used for thermoelectric generators which depend on the characteristics of the heat source, heat sink and the design of the thermoelectric generator. Many thermoelectric generator materials are currently undergoing research. This paper presented an investigation of seeking an alternative way of detecting fire hazard by developing architecture prototype of a fire detection technique using natural rubber. The thermoelectric prototype used self-powered device which improved the temperature difference gap and stabilized the cold side of TE alongside natural rubber as the cooling material. The technique is relatively simple system realization based on three viable components, i.e. a heat sensor, a low-power RF-transmitter and a RF-receiver. The heat sensor is designed and fabricated by thermoelectric and heat sink with natural rubber (NR) coating. The NR coating is heat absorption reduction. Therefore, the temperature difference is wildly resulting in the higher TE output voltage. The voltage is also supplied to the low-power RF transmitter module. In case of fire hazard, the temperature increases from 26 to 100 °C , the prototype can operate successfully. This technique will solve potentially the power supply issue in fluctuated situations. The rubber coating from rubber trees in Thailand would be a value chain added for bio-economy, supporting a sustainable development goal of the country


2019 ◽  
Author(s):  
Karolina Matuszek ◽  
R. Vijayaraghavan ◽  
Craig Forsyth ◽  
Surianarayanan Mahadevan ◽  
Mega Kar ◽  
...  

Renewable energy has the ultimate capacity to resolve the environmental and scarcity challenges of the world’s energy supplies. However, both the utility of these sources and the economics of their implementation are strongly limited by their intermittent nature; inexpensive means of energy storage therefore needs to be part of the design. Distributed thermal energy storage is surprisingly underdeveloped in this context, in part due to the lack of advanced storage materials. Here, we describe a novel family of thermal energy storage materials based on pyrazolium cation, that operate in the 100-220°C temperature range, offering safe, inexpensive capacity, opening new pathways for high efficiency collection and storage of both solar-thermal energy, as well as excess wind power. We probe the molecular origins of the high thermal energy storage capacity of these ionic materials and demonstrate extended cycling that provides a basis for further scale up and development.


Energy ◽  
2021 ◽  
Vol 225 ◽  
pp. 120096
Author(s):  
Hongjuan Hou ◽  
Qiongjie Du ◽  
Chang Huang ◽  
Le Zhang ◽  
Eric Hu

Sign in / Sign up

Export Citation Format

Share Document