scholarly journals The investigation of natural-rubber for improving self-powered heat detector based on thermoelectric generators

Author(s):  
Krittanon Prathepha ◽  
Worawat Sa-ngiamvibool

Fire hazard has destroyed humanity creations. Fire detectors have been developed by using different techniques. Thermoelectric generator (TEG) is a part of energy harvesting which is able to convert heat into electricity because of temperature difference between hot and cold side of thermoelectric device (TE). Different materials are used for thermoelectric generators which depend on the characteristics of the heat source, heat sink and the design of the thermoelectric generator. Many thermoelectric generator materials are currently undergoing research. This paper presented an investigation of seeking an alternative way of detecting fire hazard by developing architecture prototype of a fire detection technique using natural rubber. The thermoelectric prototype used self-powered device which improved the temperature difference gap and stabilized the cold side of TE alongside natural rubber as the cooling material. The technique is relatively simple system realization based on three viable components, i.e. a heat sensor, a low-power RF-transmitter and a RF-receiver. The heat sensor is designed and fabricated by thermoelectric and heat sink with natural rubber (NR) coating. The NR coating is heat absorption reduction. Therefore, the temperature difference is wildly resulting in the higher TE output voltage. The voltage is also supplied to the low-power RF transmitter module. In case of fire hazard, the temperature increases from 26 to 100 °C , the prototype can operate successfully. This technique will solve potentially the power supply issue in fluctuated situations. The rubber coating from rubber trees in Thailand would be a value chain added for bio-economy, supporting a sustainable development goal of the country

2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Rifky ◽  
Agus Fikri ◽  
Mohammad Mujirudin

Solar energy can be used by buildings. Parts of the building can convert solar thermal energy into electrical energy.The roof and walls are the parts of the building that receive the most sunlight. Therefore, the roof and walls of the building can supply electricity with the thermoelectric generator. The aim of this research is to get the maximum possible output power from the thermoelectric generator system. From the output power produced, it will be possible to find the feasibility of a thermoelectric generator to be used as an energy source for the roof and walls of the building model. The building model is designed simply where the roof and walls can be located a thermoelectric generator system, which consists of a heat sink, a thermoelectric circuit and a cooling system. The heat sink used is aluminum. The thermoelectric circuit consists of 15 sets which are assembled in a series connection arrangement. The cooling system used is active cooling, where water as the cooling fluid circulates continuously during the operation of the system. The thermoelectric hot side temperature is obtained from solar thermal radiation through a heat sink. Meanwhile, the temperature on the cold side of the thermoelectric is the result of the effect of the cooling system that is attached. The temperature difference between the hot and cold sides of the thermoelectric produces a system output in the form of electric voltage and electric current. This study obtain that the generator system on the roof with a temperature difference of 8.90 oC on the hot-cold side produces a power of 1.953 watts. While the generator system on the wall with a temperature difference between the hot-cold side of 1.80 oC produces a power of 0.030 watts.


2014 ◽  
Vol 663 ◽  
pp. 299-303 ◽  
Author(s):  
Ubaidillah ◽  
Suyitno ◽  
Imam Ali ◽  
Eko Prasetya Budiana ◽  
Wibawa Endra Juwana

Thermoelectric generator is solid-state device which convert temperature difference, ∆T into electrical energy based on Seebeck effect phenomenon. The device has been widely used in self-powered system applications. This paper focuses on presentation of methodology for characterizing thermoelectric generators. The measurement of its behavior is performed by varying load resistances. A standard module of thermoelectric generator (TEC1-12710) is used in examination and an instrument setup consists of controllable heat source, controllable cooler, personal computer, data logger MCC DAQ USB-1208LS equipped with two sets of K-type thermocouples. The experiment is performed by measuring output voltage and output current in 4 values of temperature gradient by applying 10 values of resistive loads connected to the thermoelectric output wires. The common parameters studied in this research are output voltage, current and power. Generally, the relationship between parameters agrees with the basic theory and the procedure can be adopted for characterizing other type of thermoelectric generator.


2019 ◽  
Vol 128 ◽  
pp. 07004
Author(s):  
Björn Pfeiffelmann ◽  
Cansu Özman ◽  
Ali Cemal Benim ◽  
Franz Joos

The present paper presents an experimental investigation of the variable temperature effects on the performance of a Thermoelectric Generator (TEG). In the conducted experiments, a sample TEG is analyzed by imposing variable temperature patterns on the cold side, while keeping the temperature uniformon the hot side. The achieved local temperature variations on the cold side has approximately been about 8% of the temperature difference between the hot and cold sides. The results reveal that the TEG performance shows some variation with the applied variable temperature patterns, which remains, however,rather small for the applied temperature variations. For achieving a more clear answer to the present question, further experiments need to be designed where more substantial temperature variations canbeobtained.


2013 ◽  
Vol 743-744 ◽  
pp. 105-110
Author(s):  
Hong Tao Yu ◽  
Zhi Feng Zhang ◽  
Qing Quan Qiu ◽  
Qiang Sun ◽  
Guo Min Zhang ◽  
...  

Semiconductor thermoelectric generators have a series of advantages, such as compact volume, high-level reliability, and effective power generation in the presence of temperature difference. In many occasions, as a result of high voltage, electrical equipments can't be measured by the way of direct contact. In order to avoid equipment faults caused by low-voltage contact, a thermoelectric generator which uses waste heat of electrical equipments in service was designed. Electrical equipments often operate below 400K, and in this condition Bi2Te3 shows an outstanding performance of power generation. In order to solve the problems of little temperature difference and output power on steady-state, two methods were introduced. On the one hand, the temperature difference can be increased by filling with thermal insulation padding between the p-n junctions and using a heat sink in the cold side, and on the other hand, the output voltage and power will be augmented by increasing the number of p-n junctions. These methods have been proved effectively by simulation and experiment with promising outcomes.


2021 ◽  
Vol 2021 ◽  
pp. 1-22
Author(s):  
Atif Sardar Khan ◽  
Farid Ullah Khan

The development of special wearable/portable electronic devices for health monitoring is rapidly growing to cope with different health parameters. The emergence of wearable devices and its growing demand has widened the scope of self-powered wearable devices with the possibility to eliminate batteries. For instance, the wearable thermoelectric energy harvester (TEEH) is an alternate to batteries, which has been used in this study to develop four different self-powered wearable jacket prototypes and experimentally validated. It is observed that the thermal resistance of the cold side without a heat sink of prototype 4 is much greater than the rest of the proposed prototypes. Besides that, the thermal resistance of prototype 4 heat sinks is even lower among all proposed prototypes. Therefore, prototype 4 would have a relatively higher heat transfer coefficient which results in improved power generation. Moreover, an increase in heat transfer coefficient is observed with an increase in the temperature difference of the cold and hot sides of a TEEH. Thus, on the cold side, a heat flow increases which benefits heat dissipation and in turn reduces the thermal resistance of the heat sink. Besides that, the developed prototypes on people show that power generation is also affected by factors like ambient temperature, person’s activity, and wind breeze and does not depend on the metabolism. A different mechanism has been explored to maximize the power output within a 16.0 cm2 area, in order to justify the wearability of the energy harvester. Furthermore, it is observed that during the sunlight, any material covering the TEEH would improve the performance of prototypes. Prototypes are integrated into jacket and studied extensively. The TEEH system was designed to produce a maximum delivering power and power density of 699.71 μW and 43.73 μW/cm2, respectively. Moreover, the maximum voltage produced is 62.6 mV at an optimal load of 5.6 Ω. Furthermore, the TEEH (prototype 4) is connected to a power management circuit of ECT310 and LTC3108 and has been able to power 18 LEDs.


Author(s):  
Tharun Kumar G ◽  
Vincent Vidyasagar J ◽  
Ramesh M ◽  
Akhila C R

Thermo Electric Generator is a device which Converts warmth immediately into electric electricity the usage of a phenomenon known as the "Seebeck effect”. Unlike traditional dynamic warmness engines, thermoelectric generators contain no shifting components and are absolutely silent. But for small packages, thermoelectrics can end up competitive due to the fact they are compact, easy (inexpensive) and scalable. Thermoelectric systems may be without problems designed to perform with small heat resources and small temperature difference. The main aim of this project is to use BIO-POTENTIAL as a driving source of power for the implant devices such as Pacemakers. Pacemakers usually use batteries as their power source, and when the battery's period is over, the patient has to undergo surgery to replace the batteries. By using TEG, rapidly undergoing surgery of those pacemakers’s patient can be avoided. The main objective of our project is to power implantable devices using Thermoelectric Generator and avoid further surgeries for the patient.


2021 ◽  
Vol 6 (1) ◽  
pp. 60-65
Author(s):  
Rifky Rifky ◽  
Agus Fikri ◽  
Mohammad Mujirudin

AbstrakSalah satu pemanfaatan energi surya adalah mengkonversi energi termalnya menjadi energi listrik. Konvertor yang digunakan adalah generator termoelektrik. Panas matahari diterima sisi panas termoelektrik melalui penyerap panas, sedangkan sisi dinginnya dilekatkan sistem pendingin aktif dengan fluida air. Penelitian ini memiliki tujuan untuk mendapatkan daya luaran semaksimal mungkin dari sistem generator termoelektrik yang mengkonversi energi termal surya menjadi energi listrik pada model bangunan. Metode penelitian yang digunakan adalah eksperimental, yang didahului dengan perancangan dan pembuatan alat penelitian. Alat penelitian berbentuk sistem generator yang diletakkan di atap model bangunan. Sistem generator terdiri dari penyerap panas aluminium, termoelektrik yang terdiri dari 15 set, dan sistem pendingin yang menggunakan fluida air bersirkulasi. Pengujian terhadap sistem dengan cara mengoperasikannya sambil melakukan pengamatan dan pengambilan data. Variabel dalam penelitian ini adalah susunan sambungan generator termoelektrik (seri dan paralel). Sementara data masukan adalah kelembaban udara, kecepatan angin, temperatur, dan aliran alir; sedangkan data luaran adalah tegangan listrik dan arus listrik. Hasil penelitian mendapatkan bahwa dengan perbedaan temperatur 12,8oC menghasilkan daya maksimum sebesar 2,214 watt dari susunan seri sambungan termolektrik. Sementara dengan perbedaan temperatur 15,4oC mendapatkan daya maksimum sebesar 0.101 watt dari susunan paralel sambungan termoelektrik.  Kata kunci: energi, surya, termoelektrik, atap, daya AbstractOne of the uses of solar energy is converting its thermal energy into electrical energy. The converter used is a thermoelectric generator. The sun's heat is received by the thermoelectric hot side through the heat sink, while the cold side is attached by an active cooling system with water fluid. This study aims to obtain the maximum possible output power from a thermoelectric generator system that converts solar thermal energy into electrical energy in the building model. The research method used is experimental, which is preceded by the design and manufacture of research tools. The research tool is in the form of a generator system that is placed on the roof of the building model. The generator system consists of an aluminum heat sink, a thermoelectric consisting of 15 sets, and a cooling system that uses circulating water fluid. Testing the system by operating it while observing and collecting data. The variable in this research is the connection arrangement of the thermoelectric generator (series and parallel). While the input data are humidity, wind speed, temperature, and flow flow; while the output data is electric voltage and electric current. The results showed that with a temperature difference of 12.8°C the maximum power was 2,214 watts from the series arrangement of the thermoelectric junction. Meanwhile, with a temperature difference of 15.4°C, the maximum power is 0.101 watts from the parallel arrangement of the thermoelectric connection. Keywords: energy, solar, thermoelectric, roof, power


Author(s):  
Muhammad Abdul Manap ◽  
Al Fikri

his study aims to design an alternative power generator using a thermoelectric generator (TEG) by utilizing a heating furnace, using two thermoelectric generators (TEG) connected in series. Thermoelectrics that take advantage of temperature differences can produce voltages that correspond to the seebeck effect. The alternative power generator that has been designed consist of a thermoelectric, boost converter, and a 5 Watt DC lamp load. The test was carried out using a Boost Converter and using a 5 Watt DC lamp load for 20 minutes. The results of the research using the Boost Converter produce a voltage of 42.8 V with a temperature difference of 90°C, while using a 5 Watt DC lamp load produces a voltage of 8.81 V with a temperature difference of 82°C and the resulting current is 0.6 A, the resulting power 4.84W.


2011 ◽  
Vol 383-390 ◽  
pp. 6122-6127 ◽  
Author(s):  
Ze Guang Zhou ◽  
Dong Sheng Zhu ◽  
Yin Sheng Huang ◽  
Chan Wang

Heat sink does affect on the performance of thermoelectirc generator according to the studies of many authors. In this paper, an analytical model inculding the number of thermocouples and the thermal resistance of heat sink is derived. The match between the thermoelectric module and heat sink is discussed by numerical calculation also. The results show that the thermal resistance of thermoelectric module should be designed to match that of heat sink in order to get the highest output power for a given heat sink. But for a given thermoelectric module, the output power increases with the decrease of heat sink thermal resistance, and there is a suitable heat sink due to the limit of the temperature difference between the heat source and coolant.


2015 ◽  
Author(s):  
Mohammed Waliur Rahman ◽  
Khamid Mahkamov

This paper demonstrates the performance analysis of various arrangements of thermoelectric generators to be used for the combination of a Low Temperature Difference Stirling Engine-Thermoelectric Generator hybrid system. To estimate whether the deployed Stirling Engines will perform on satisfactory level it is necessary to determine if a sufficient thermal flux can be provided to the heating part of the Low Temperature Difference Stirling Engine (LTD SE) from the “cold” side of the thermoelectric generator or their combination. This paper reports study results on the performance of a single layer and a cascaded two-layer thermoelectric generator made up of bulk material. These two generators were connected in series and in parallel to produce the combined thermoelectric module operating as a three-layer generator. Also computational data on the temperature distribution across the layers has been obtained using Finite Element Analysis as a part of ANSYS software. Results obtained demonstrate that both the single and two-layer generators provide sufficient heat flux to drive LTD SEs but the total power output from the two-layer generator-Stirling Engine system is considerable higher when the engine is coupled to a single and three-layered thermoelectric generator.


Sign in / Sign up

Export Citation Format

Share Document