scholarly journals Sabine Pass to Galveston Bay, TX Pre-construction, Engineering and Design (PED) : coastal storm surge and wave hazard assessment : report 3 – Orange County

2021 ◽  
Author(s):  
Abigail Stehno ◽  
Jeffrey Melby ◽  
Shubhra Misra ◽  
Norberto Nadal-Caraballo ◽  
Victor Gonzalez

The US Army Corps of Engineers, Galveston District, is executing the Sabine Pass to Galveston Bay Coastal Storm Risk Management (CSRM) project for Brazoria, Jefferson, and Orange Counties regions. The project is currently in the Pre-construction, Engineering, and Design phase. This report documents coastal storm water level (SWL) and wave hazards for the Orange County CSRM structures. Coastal SWL and wave loading and overtopping are quantified using high-fidelity hydrodynamic modeling and stochastic simulations. The CSTORM coupled water level and wave modeling system simulated 195 synthetic tropical storms on three relative sea level change scenarios for with- and without-project meshes. Annual exceedance probability (AEP) mean values were reported for the range of 0.2 to 0.001 for peak SWL and wave height (Hm0) along with associated confidence limits. Wave period and mean wave direction associated with Hm0 were also computed. A response-based stochastic simulation approach is applied to compute AEP values for overtopping for levees and overtopping, nappe geometry, and combined hydrostatic and hydrodynamic fluid pressures for floodwalls. CSRM crest design elevations are defined based on overtopping rates corresponding to incipient damage. Survivability and resilience are evaluated. A system-wide hazard level assessment was conducted to establish final recommended system-wide elevations.

2021 ◽  
Author(s):  
Jeffrey Melby ◽  
Thomas Massey ◽  
Abigail Stehno ◽  
Norberto Nadal-Caraballo ◽  
Shubhra Misra ◽  
...  

The US Army Corps of Engineers, Galveston District, is executing the Sabine Pass to Galveston Bay Coastal Storm Risk Management (CSRM) project for Brazoria, Jefferson, and Orange Counties regions. The project is currently in the Pre-construction, Engineering, and Design phase. This report documents coastal storm water level and wave hazards for the Port Arthur CSRM structures. Coastal storm water level (SWL) and wave loading and overtopping are quantified using high-fidelity hydrodynamic modeling and stochastic simulations. The CSTORM coupled water level and wave modeling system simulated 195 synthetic tropical storms on three relative sea level change scenarios for with- and without-project meshes. Annual exceedance probability (AEP) mean values were reported for the range of 0.2 to 0.001 for peak SWL and wave height (Hm0) along with associated confidence limits. Wave period and mean wave direction associated with Hm0 were also computed. A response-based stochastic simulation approach is applied to compute AEP runup and overtopping for levees and overtopping, nappe geometry, and combined hydrostatic and hydrodynamic fluid pressures for floodwalls. CSRM structure crest design elevations are defined based on overtopping rates corresponding to incipient damage. Survivability and resilience are evaluated. A system-wide hazard level assessment was conducted to establish final recommended system-wide CSRM structure elevations.


2021 ◽  
Author(s):  
Abigail Stehno ◽  
Jeffrey Melby ◽  
Shubhra Misra ◽  
Norberto Nadal-Caraballo ◽  
Victor Gonzalez

The US Army Corps of Engineers, Galveston District, is executing the Sabine Pass to Galveston Bay Coastal Storm Risk Management (CSRM) project for Brazoria, Jefferson, and Orange Counties regions. The project is currently in the Pre-construction, Engineering, and Design phase. This report documents coastal storm water level and wave hazards for the Port Arthur CSRM structures. Coastal storm water level (SWL) and wave loading and overtopping are quantified using high-fidelity hydrodynamic modeling and stochastic simulations. The CSTORM coupled water level and wave modeling system simulated 195 synthetic tropical storms on three relative sea level change scenarios for with- and without-project meshes. Annual exceedance probability (AEP) mean values were reported for the range of 0.2 to 0.001 for peak SWL and wave height (Hm0) along with associated confidence limits. Wave period and mean wave direction associated with Hm0 were also computed. A response-based stochastic simulation approach is applied to compute AEP values for overtopping for levees and overtopping, nappe geometry, and combined hydrostatic and hydrodynamic fluid pressures for floodwalls. CSRM crest design elevations are defined based on overtopping rates corresponding to incipient damage. Survivability and resilience are evaluated. A system-wide hazard level assessment was conducted to establish final recommended system-wide elevations.


2021 ◽  
Author(s):  
Abigail Stehno ◽  
Jeffrey Melby ◽  
Shubhra Misra ◽  
Norberto Nadal-Caraballo ◽  
Victor Gonzalez

The US Army Corps of Engineers, Galveston District, is executing the Sabine Pass to Galveston Bay Coastal Storm Risk Management (CSRM) project for Brazoria, Jefferson, and Orange Counties regions. The project is currently in the Pre-construction, Engineering, and Design phase. This report documents coastal storm water level (SWL) and wave hazards for the Freeport CSRM structures. Coastal SWL and wave loading and overtopping are quantified using high-fidelity hydrodynamic modeling and stochastic simulations. The CSTORM coupled water level and wave modeling system simulated 195 synthetic tropical storms on three relative sea level change scenarios for with- and without-project meshes. Annual exceedance probability (AEP) mean values were reported for the range of 0.2 to 0.001 for peak SWL and wave height (Hm0) along with associated confidence limits. Wave period and mean wave direction associated with Hm0 were also computed. A response-based stochastic simulation approach is applied to compute AEP values for overtopping for levees and overtopping, nappe geometry and combined hydrostatic and hydrodynamic fluid pressures for floodwalls. CSRM crest design elevations are defined based on overtopping rates corresponding to incipient damage. Survivability and resilience are evaluated. A system-wide hazard level assessment was conducted to establish final recommended system-wide elevations.


Author(s):  
Volker Roeber ◽  
J. Dylan Nestler ◽  
Jonas Pinault ◽  
Assaf Azouri ◽  
Florian Bellafont

Phase-resolving numerical models are a powerful tool to identify and analyze dominant wave processes along a site of interest. We have carried out a numerical study related to infra-gravity wave dynamics along the French Basque coast. The computed scenarios are representative for the swell conditions at the site of interest and include variations in offshore wave height, direction, and water level. Several statistical methods were employed that illustrate that the irregular bathymetry is a key component for the strong variations in sea-swell and IG-wave energy. The water level is demonstrated to substantially affect the IG-wave behavior, more than the wave direction. Swash oscillations in the IG-frequency band are greater than or equal to sea-swell swash oscillations at nearly all locations along the studied shoreline.Recorded Presentation from the vICCE (YouTube Link): https://youtu.be/ELZwJCokkX0


2021 ◽  
Author(s):  
Shanil Persaud

Coastal outfalls that discharge storm water and/or sewerage into bodies of water are part of a collection of critical municipal infrastructure that must be kept functioning properly at all times so as to avoid expensive frequent maintenance and environmental problems. The Green Road costal outfall pipe, located in an embayment on the shores of Lake Ontario in the City of Hamilton, is subject to sediment plugging by waves that transport sediments from an eroding bluff to the east into the study outfall pipe, thereby reducing its hydraulic discharge capacity. To alleviate the problem of outfall blockage, a 1:15 scale undistorted physical (hydraulic) model ws designed and built at the National Water Research Institute (NWRI) to study the performance of a self-scouring outfall (SSO), a structure that utilizes combination of wave run-up slopes, converging walls and steep outlet channels to promote self-cleansing with respect to sediment to prevent direct sediment intrusion into the outfall pipe. A commercial computational fluid dynamics (CFD) model FLUENT, was used to study the internal hydrodynamics of the complex outfall structure. Results from the physical model determined that the performance of the SSO is a function of wave direction, water level, wave height and period, as well as sediment characteristics. Model results indicate that a SSO built on the shores of Lake Ontario would be able to scour a greater amount of sediment in conjunction with a high water level and wave height of 75.07 m and 1.95 m, respectively. A modified SSO design reduced sedimentation on the wave run-up slopes by more than 25% and was 100% effective in preventing direct sediment intrusion. The structure performed exceptionally better than a traditional outfall in terms of sediment handling. Therefore, it is expected a municipality can save a great deal of money on cleanouts by installing a self-scouring outfall to prevent outfall plugging.


2010 ◽  
Vol 37 (2) ◽  
pp. 279-289 ◽  
Author(s):  
L. Tan ◽  
H. P. Hong

Tornado hazard assessment is often based on the consideration that the spatial distribution of tornado occurrence is homogeneous in a region. Although this assumption simplifies the analysis, it could overestimate and underestimate tornado hazard for regions with lower and higher tornadic activity if an average rate of tornado occurrence is employed. The degree of overestimation and underestimation is unknown. This study is focused on the assessment of the impact of spatial inhomogeneity of tornado occurrence on the estimated tornado hazard and the development of tornado hazard maps for southern Ontario. The results indicate that at the factored design wind speed the exceedance probability for tornadic winds is much smaller than that for synoptic winds, even if the spatial inhomogeneity of tornado occurrence is considered. Furthermore, the results show that the spatial inhomogeneity of tornado occurrence has significant impact on the spatial tornado hazard level, that the return period values of tornado wind speed vary significantly over the considered region, and that the inhomogeneity must be considered in developing probabilistic quantitative tornado hazard maps.


Author(s):  
Gro Sagli Baarholm ◽  
Sverre Haver ◽  
Carl M. Larsen

This paper is concerned with estimating the response value corresponding to given annual exceedance probability. In principle, this requires that a full long term analysis is executed. For a linear response this can easily be done. For a non-linear response quantity however, where time domain simulations are required in order to obtain the short term stochastic structure a full long term analysis will be time consuming. An approximate method to determine the long-term extremes by considering only a few short term sea states is outlined. All sea states corresponding to a certain probability of occurrence and are given by a contour line of Hs, Tp for each wave direction. The advantage of the method is that a proper estimate of the long term extreme can be obtained by considering the most unfavourable sea state along the contour line. This will make possible practical estimation of the extreme loads the structure is exposed to. The purpose of the present paper is to illustrate how to apply directional contour lines in order to obtain a characteristic design value according to requirements regarding the marginal exceedance probability.


2021 ◽  
Author(s):  
Jeffrey Melby ◽  
Thomas Massey ◽  
Fatima Diop ◽  
Himangshu Das ◽  
Norberto Nadal-Caraballo ◽  
...  

The US Army Corps of Engineers, Galveston District, is executing the Coastal Texas Protection and Restoration Feasibility Study coastal storm risk management (CSRM) project for the region. The project is currently in the feasibility phase. The primary goal is to develop CSRM measures that maximize national net economic development benefits. This report documents the coastal storm water level and wave hazard, including sea level rise, for a variety of flood risk management alternatives. Four beach restoration alternatives for Galveston Island and Bolivar peninsula were evaluated. Suites of synthetic tropical and historical non-tropical storms were developed and modeled. The CSTORM coupled surge-and-wave modeling system was used to accurately characterize storm circulation, water level, and wave hazards using new model meshes developed from high-resolution land and sub-aqueous surveys for with- and without-project scenarios. Beach morphology stochastic response was modeled with a Monte Carlo life-cycle simulation approach using the CSHORE morphological evolution numerical model embedded in the StormSim stochastic modeling system. Morphological and hydrodynamic response were primarily characterized with probability distributions of the number of rehabilitations and overflow.


2021 ◽  
Vol 25 (12) ◽  
pp. 6107-6132
Author(s):  
Gerardo Benito ◽  
Olegario Castillo ◽  
Juan A. Ballesteros-Cánovas ◽  
Maria Machado ◽  
Mariano Barriendos

Abstract. Current climate modelling frameworks present significant uncertainties when it comes to quantifying flood quantiles in the context of climate change, calling for new information and strategies in hazard assessments. Here, state-of-the-art methods on hydraulic and statistical modelling are applied to historical and contemporaneous flood records to evaluate flood hazards beyond natural climate cycles. A comprehensive flood record of the Duero River in Zamora (Spain) was compiled from documentary sources, early water-level readings and continuous gauge records spanning the last 500 years. Documentary evidence of flood events includes minute books (municipal and ecclesiastic), narrative descriptions, epigraphic marks, newspapers and technical reports. We identified 69 flood events over the period 1250 to 1871, of which 15 were classified as catastrophic floods, 16 as extraordinary floods and 38 as ordinary floods. Subsequently, a two-dimensional hydraulic model was implemented to relate flood stages (flood marks and inundated areas) to discharges. The historical flood records show the largest floods over the last 500 years occurred in 1860 (3450 m3 s−1), 1597 (3200 m3 s−1) and 1739 (2700 m3 s−1). Moreover, at least 24 floods exceeded the perception threshold of 1900 m3 s−1 during the period (1500–1871). Annual maximum flood records were completed with gauged water-level readings (pre-instrumental dataset, PRE: 1872–1919) and systematic gauge records (systematic dataset, SYS: 1920–2018). The flood frequency analyses were based on (1) the expected moments algorithm (EMA) and (2) the maximum likelihood estimator (MLE) method, using five datasets with different temporal frameworks (historic dataset, HISTO: 1511–2018; PRE–SYS: 1872–2018; full systematic record, ALLSYS: 1920–2018; SYS1: 1920–1969; and SYS2: 1970–2018). The most consistent results were obtained using the HISTO dataset, even for high quantiles (0.001 % annual exceedance probability, AEP). PRE–SYS was robust for the 1 % AEP flood with increasing uncertainty in the 0.2 % AEP or 500-year flood, and ALLSYS results were uncertain in the 1 % and 0.2 % AEP floods. Since the 1970s, the frequency of extraordinary floods (>1900 m3 s−1) declined, although floods on the range of the historical perception threshold occurred in 2001 (2075 m3 s−1) and 2013 (1654 m3 s−1). Even if the future remains uncertain, this bottom-up approach addresses flood hazards under climate variability, providing real and certain flood discharges. Our results can provide a guide on low-regret adaptation decisions and improve public perception of extreme flooding.


Sign in / Sign up

Export Citation Format

Share Document