scholarly journals Sabine Pass to Galveston Bay, TX Pre-construction, Engineering and Design (PED) : coastal storm surge and wave hazard assessment : report 4 – Freeport

2021 ◽  
Author(s):  
Abigail Stehno ◽  
Jeffrey Melby ◽  
Shubhra Misra ◽  
Norberto Nadal-Caraballo ◽  
Victor Gonzalez

The US Army Corps of Engineers, Galveston District, is executing the Sabine Pass to Galveston Bay Coastal Storm Risk Management (CSRM) project for Brazoria, Jefferson, and Orange Counties regions. The project is currently in the Pre-construction, Engineering, and Design phase. This report documents coastal storm water level (SWL) and wave hazards for the Freeport CSRM structures. Coastal SWL and wave loading and overtopping are quantified using high-fidelity hydrodynamic modeling and stochastic simulations. The CSTORM coupled water level and wave modeling system simulated 195 synthetic tropical storms on three relative sea level change scenarios for with- and without-project meshes. Annual exceedance probability (AEP) mean values were reported for the range of 0.2 to 0.001 for peak SWL and wave height (Hm0) along with associated confidence limits. Wave period and mean wave direction associated with Hm0 were also computed. A response-based stochastic simulation approach is applied to compute AEP values for overtopping for levees and overtopping, nappe geometry and combined hydrostatic and hydrodynamic fluid pressures for floodwalls. CSRM crest design elevations are defined based on overtopping rates corresponding to incipient damage. Survivability and resilience are evaluated. A system-wide hazard level assessment was conducted to establish final recommended system-wide elevations.

2021 ◽  
Author(s):  
Abigail Stehno ◽  
Jeffrey Melby ◽  
Shubhra Misra ◽  
Norberto Nadal-Caraballo ◽  
Victor Gonzalez

The US Army Corps of Engineers, Galveston District, is executing the Sabine Pass to Galveston Bay Coastal Storm Risk Management (CSRM) project for Brazoria, Jefferson, and Orange Counties regions. The project is currently in the Pre-construction, Engineering, and Design phase. This report documents coastal storm water level (SWL) and wave hazards for the Orange County CSRM structures. Coastal SWL and wave loading and overtopping are quantified using high-fidelity hydrodynamic modeling and stochastic simulations. The CSTORM coupled water level and wave modeling system simulated 195 synthetic tropical storms on three relative sea level change scenarios for with- and without-project meshes. Annual exceedance probability (AEP) mean values were reported for the range of 0.2 to 0.001 for peak SWL and wave height (Hm0) along with associated confidence limits. Wave period and mean wave direction associated with Hm0 were also computed. A response-based stochastic simulation approach is applied to compute AEP values for overtopping for levees and overtopping, nappe geometry, and combined hydrostatic and hydrodynamic fluid pressures for floodwalls. CSRM crest design elevations are defined based on overtopping rates corresponding to incipient damage. Survivability and resilience are evaluated. A system-wide hazard level assessment was conducted to establish final recommended system-wide elevations.


2021 ◽  
Author(s):  
Jeffrey Melby ◽  
Thomas Massey ◽  
Abigail Stehno ◽  
Norberto Nadal-Caraballo ◽  
Shubhra Misra ◽  
...  

The US Army Corps of Engineers, Galveston District, is executing the Sabine Pass to Galveston Bay Coastal Storm Risk Management (CSRM) project for Brazoria, Jefferson, and Orange Counties regions. The project is currently in the Pre-construction, Engineering, and Design phase. This report documents coastal storm water level and wave hazards for the Port Arthur CSRM structures. Coastal storm water level (SWL) and wave loading and overtopping are quantified using high-fidelity hydrodynamic modeling and stochastic simulations. The CSTORM coupled water level and wave modeling system simulated 195 synthetic tropical storms on three relative sea level change scenarios for with- and without-project meshes. Annual exceedance probability (AEP) mean values were reported for the range of 0.2 to 0.001 for peak SWL and wave height (Hm0) along with associated confidence limits. Wave period and mean wave direction associated with Hm0 were also computed. A response-based stochastic simulation approach is applied to compute AEP runup and overtopping for levees and overtopping, nappe geometry, and combined hydrostatic and hydrodynamic fluid pressures for floodwalls. CSRM structure crest design elevations are defined based on overtopping rates corresponding to incipient damage. Survivability and resilience are evaluated. A system-wide hazard level assessment was conducted to establish final recommended system-wide CSRM structure elevations.


2021 ◽  
Author(s):  
Abigail Stehno ◽  
Jeffrey Melby ◽  
Shubhra Misra ◽  
Norberto Nadal-Caraballo ◽  
Victor Gonzalez

The US Army Corps of Engineers, Galveston District, is executing the Sabine Pass to Galveston Bay Coastal Storm Risk Management (CSRM) project for Brazoria, Jefferson, and Orange Counties regions. The project is currently in the Pre-construction, Engineering, and Design phase. This report documents coastal storm water level and wave hazards for the Port Arthur CSRM structures. Coastal storm water level (SWL) and wave loading and overtopping are quantified using high-fidelity hydrodynamic modeling and stochastic simulations. The CSTORM coupled water level and wave modeling system simulated 195 synthetic tropical storms on three relative sea level change scenarios for with- and without-project meshes. Annual exceedance probability (AEP) mean values were reported for the range of 0.2 to 0.001 for peak SWL and wave height (Hm0) along with associated confidence limits. Wave period and mean wave direction associated with Hm0 were also computed. A response-based stochastic simulation approach is applied to compute AEP values for overtopping for levees and overtopping, nappe geometry, and combined hydrostatic and hydrodynamic fluid pressures for floodwalls. CSRM crest design elevations are defined based on overtopping rates corresponding to incipient damage. Survivability and resilience are evaluated. A system-wide hazard level assessment was conducted to establish final recommended system-wide elevations.


Author(s):  
Volker Roeber ◽  
J. Dylan Nestler ◽  
Jonas Pinault ◽  
Assaf Azouri ◽  
Florian Bellafont

Phase-resolving numerical models are a powerful tool to identify and analyze dominant wave processes along a site of interest. We have carried out a numerical study related to infra-gravity wave dynamics along the French Basque coast. The computed scenarios are representative for the swell conditions at the site of interest and include variations in offshore wave height, direction, and water level. Several statistical methods were employed that illustrate that the irregular bathymetry is a key component for the strong variations in sea-swell and IG-wave energy. The water level is demonstrated to substantially affect the IG-wave behavior, more than the wave direction. Swash oscillations in the IG-frequency band are greater than or equal to sea-swell swash oscillations at nearly all locations along the studied shoreline.Recorded Presentation from the vICCE (YouTube Link): https://youtu.be/ELZwJCokkX0


2018 ◽  
Vol 7 (3.30) ◽  
pp. 497
Author(s):  
Nonik Eko Wahyuning Tiyas ◽  
Dwita Sutjiningsih

Jakarta is a lowland area with 40% of its territory at an elevation below the sea level so it is very vulnerable to flooding. One of out many causes floods in Jakarta is by the overflow of the Ciliwung River. The Ciliwung Watershed has a very strategic value in Indonesia because the Ciliwung River is one of thirteen rivers crossing the nation's capital. The rapid urbanization and population growth led to an increasing impervious area in the Ciliwung Watershed which resulted in a flood hydrograph change. This research aims to determine the influence of land use change, which is taking into account the spatial discretization and the riparian characteristic of Middle - Lower Ciliwung Sub-Watershed on flood hydrograph at Manggarai Weir. This research reviews the related literature on the implementation of HEC-GeoHMS version 10.1 developed by US Army Corps of Engineers (2013) to estimate the effect of land use change on flood hydrographs by taking into account the characteristics of the riparian described descriptively and present arguments to claim that the discretization spatial method can provide significantly more flood hydrographs results with existing conditions.  


1964 ◽  
Vol 1 (4) ◽  
pp. 215-226 ◽  
Author(s):  
W G Brown

Calculations using the Neumann solution (as modified by Aldrich) and thermal properties of soils (obtained by Kersten) show that the frost penetration depth for the same freezing index for essentially all soils with any moisture content and for dry sand and rock varies by a factor of about 2 to 1. The extremes calculated in this way bracket the experimentally determined design curve of the US Army Corps of Engineers and give it theoretical support. The theoretical calculations and additional experimental data are used as a basis for a small alteration in the slope of the design curve. This modified design curve is recommended for field use because of (1) inherent imperfections in existing theory and (2) practical limitations to precise specification of field conditions.


Author(s):  
Mark Walczynski

This concluding chapter demonstrates that under state management, Starved Rock State Park grew in popularity. The park provided specialists from the US Army Corps of Engineers with a training area to master the military art of pontoon bridge assembly in preparation for the Allied invasion of Germany in World War II. Equally important, the park was where locals came to work and to relax in the 1950s and 1960s, and it is where today over two million people come to hike, camp, picnic, fish, hunt, and enjoy nature every year. However, the very geologic composition of Starved Rock and its environs has created a new challenge for the twenty-first century. Sand companies now mine silica sand near the park. The challenge is one of balance between protection of the park's fragile natural resources versus the competing interests of local governments and residents desiring new employment opportunities. In addition, the Starved Rock Dam, completed in 1933, raised the level of the Illinois River above the dam about ten feet. Nevertheless, the Illinois Department of Natural Resources employees at Starved Rock State Park are dedicated to preserving and maintaining the park and to serving park visitors.


Author(s):  
Jane McKee Smith ◽  
Spicer Bak ◽  
Tyler Hesser ◽  
Mary A. Bryant ◽  
Chris Massey

An automated Coastal Model Test Bed has been built for the US Army Corps of Engineers Field Research Facility to evaluate coastal numerical models. In October of 2015, the test bed was expanded during a multi-investigator experiment, called BathyDuck, to evaluate two bathymetry sources: traditional survey data and bathymetry generated through the cBathy inversion algorithm using Argus video measurements. Comparisons were made between simulations using the spectral wave model STWAVE with half-hourly cBathy bathymetry and the more temporally sparse surveyed bathymetry. The simulation results using cBathy bathymetry were relatively close to those using the surveyed bathymetry. The largest differences were at the shallowest gauges within 250 m of the coast, where wave model normalized root-mean-square was approximately twice are large using the cBathy bathymetry. The nearshore errors using the cBathy input were greatest during events with wave height greater than 2 m. For this limited application, the Argus cBathy algorithm proved to be a suitable bathymetry input for nearshore wave modeling. cBathy bathymetry was easily incorporated into the modeling test bed and had the advantage of being updated on approximately the same temporal scale as the other model input conditions. cBathy has great potential for modeling applications where traditional surveys are sparse (seasonal or yearly).


Sign in / Sign up

Export Citation Format

Share Document