scholarly journals POTENSI BAKTERI ENDOFIT MENGINDUKSI KETAHANAN TANAMAN LADA TERHADAP INFEKSI Meloidogyne incognita

2020 ◽  
Vol 17 (3) ◽  
pp. 118 ◽  
Author(s):  
RITA HARNI ◽  
MEYNARTI SARI DEWI IBRAHIM

<p>ABSTRAK</p><p>Meloidogyne incognita, merupakan salah satu organisme peng-ganggu (OPT) penyebab penyakit kuning pada tanaman lada dan dapatmengakibatkan penurunan hasil sampai 32%. Beberapa teknik untukmengendalikan patogen ini telah dilakukan tetapi belum memberikan hasilyang memuaskan. Pengendalian biologi dengan menggunakan bakteriendofit merupakan salah satu alternatif pengendalian yang cukup men-janjikan untuk dapat mengatasi permasalahan nematoda penyakit tanaman.Penelitian ini telah dilakukan di Laboratorium Bakteriologi danNematologi Departemen Proteksi Tanaman Institut Pertanian Bogor, danRumah Kaca Balai Penelitian Tanaman Rempah dan Aneka TanamanIndustri Pakuwon Sukabumi dari bulan Mei sampai November 2009.Kegiatan yang dilakukan adalah: 1) Seleksi beberapa isolat bakteri endofituntuk mengendalikan nematoda M. incognita pada tanaman lada dan 2)Potensi induced systemic resistance (ISR) dan analisis asam salisilat sertaperoksidase. Isolat bakteri endofit yang digunakan adalah isolat bakteriendofit potensial yang diisolasi dari akar nilam. Akar tanaman ladadirendam dalam suspensi bakteri endofit, selanjutnya diinokulasi dengan500 ekor larva 2 M. incognita. Sebulan setelah inokulasi tanamandibongkar diamati populasi nematoda dan pertumbuhan tanaman. AnalisisISR dilakukan dengan metode split root system dilanjutkan dengananalisis kadar asam salisilat dan peroksidase. Penelitian mengunakanRancangan Acak Lengkap. Hasil penelitian menunjukkan bahwa bakteriendofit dapat menekan jumlah puru dan populasi nematoda di dalam akar.Penekanan tertinggi pada isolat MSK (97,93%) tidak berbeda nyatadengan isolat BAS, TT2, dan NJ46 yaitu 97,35; 95,22; dan 92,14%.Berdasarkan analisis split root system, ke 4 isolat tersebut dapat meng-induksi ketahanan tanaman lada secara sistemik dengan mekanismepeningkatan kandungan asam salisilat dan peroksidase di dalam akar.</p><p>Kata kunci : Bakteri endofit, penyakit kuning, Piper nigrum L.,Meloidogyne incognita, induksi ketahanan</p><p>ABSTRACT</p><p>The use of endophytic bacteria to induce plant resistanceagainst infection of root-knot nematode (Meloidogyneincognita) on black pepper</p><p>Root-knot nematode (Meloidogyne incognita) is one of important patho-gens causing yellow disease on black pepper. As a result of this pathogenattack can lower the results up to 32%. Several control methods have beendone successful to control pathogen. Biological control using endophyticbacteria is one of prospective alternative control methods to overcomenematode problem. The research had been conducted in the Laboratory ofBacteriology and Nematology Department of Plant Protection, BogorAgricultural University (IPB) and in greenhouse of Indonesian Spices andIndustrial Crops Research Institute (ISICRI) Sukabumi. The objectives ofthis study were : 1) Selection of endophytic bacteria to control M.incognita nematodes on black pepper and 2) Potential of induced systemicresistance (ISR) and analysis of salicylic acid and peroxidase. Endophyticbacterial isolates used were endophytic potential bacterial isolates isolatedfrom the roots of patchouli. Pepper plant roots were soaked in anendophytic bacterial suspension, then inoculated with 500 larvae of 2 M.incognita. A month after inoculation, the plants were dismantled andobserved population of nematodes and plant growth. ISR analysis wasperformed by the method of split root system followed by analysis ofsalicylic acid and peroxidase contents. The research was arranged usingCompletely Randomized Design. The results showed that endophyticbacteria were able to suppress the amount of gall and nematode populationin roots. The highest suppression was on MSK isolate (97.93%) which wasnot significantly different from BAS, TT2, and NJ46 isolates, namely97.35, 95.22, and 92.14%, respectively. The analysis of split root systemshowed that the 4 isolates were able to induce systemic resistance of blackpepper with a mechanism of increase in salicylic acid and peroxidasecontents in roots.</p><p>Key words : Endophytic bacteria, yellow disease, Piper nigrum L.,Meloidogyne incognita, induce systemic resistance</p>


Agriculture ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 15
Author(s):  
Sy Dinh Nguyen ◽  
Thi Huyen Trang Trinh ◽  
Trung Dzung Tran ◽  
Tinh Van Nguyen ◽  
Hoang Van Chuyen ◽  
...  

Black pepper (Piper nigrum L.) is one of the most important crops and global demand continues to increase, giving it a high export value. However, black pepper cultivation has been seriously affected by a number of pathogenic diseases. Among them, “quick wilt” caused by Phytophthora sp., “slow decline” caused by Fusarium sp., and root-knot nematode Meloidogyne sp. have a serious negative effect on black pepper growth and productivity. There have been different chemical and biological methods applied to control these diseases, but their effectiveness has been limited. The aim of this research was to evaluate different combinations of rhizosphere bacteria and endophytic bacteria isolated from black pepper farms in the Central Highland of Vietnam for their ability to suppress pathogens and promote black pepper growth and yield. Formula 6, containing the strains Bacillus velezensis KN12, Bacillus amyloliquefaciens DL1, Bacillus velezensis DS29, Bacillus subtilis BH15, Bacillus subtilis V1.21 and Bacillus cereus CS30 exhibited the largest effect against Phytophthora and Fusarium in the soil and in the roots of black pepper. These bio-products also increased chlorophyll a and b contents, which led to a 1.5-fold increase of the photosynthetic intensity than the control formula and a 4.5% increase in the peppercorn yield (3.45 vs. 3.30 tons per hectare for the control). Our results suggest that the application of rhizosphere and endophytic bacteria is a promising method for disease control and growth-promotion of black pepper.



Nematology ◽  
2006 ◽  
Vol 8 (6) ◽  
pp. 847-852 ◽  
Author(s):  
Tam Vu ◽  
Richard Sikora ◽  
Rüdiger Hauschild

AbstractFour mutualistic endophytic fungal isolates were investigated for their ability to induce systemic resistance in banana toward the burrowing nematode, Radopholus similis in glasshouse experiments. Two isolates of Fusarium oxysporum and one of F. cf. diversisporum isolated from the cortical tissue of banana, and another isolate of F. oxysporum isolated from tomato, were compared. When the root systems of seedling banana plants were pre-inoculated with the four endophytic fungi, R. similis root penetration was reduced by 29-39% and 22-41% 5 and 15 days after nematode inoculation, respectively. Induction of systemic resistance to R. similis in banana roots by the same endophytic fungi was tested in a split-root system. Depending on the isolate, the penetration rates decreased between 30-38.5% and 26.7-45% after 5 and 15 days in the untreated half of the split-root system of plants treated with the endophytic strains when compared to those treated without the fungi. This is the first time that systemic resistance induced by a fungal endophyte has been demonstrated in banana.



1994 ◽  
Vol 90 (2) ◽  
pp. 259-268 ◽  
Author(s):  
Sylvain Chaillou ◽  
James W. Rideout ◽  
C. David Raper, ◽  
Jean-Francois Morot-Gaudry




2009 ◽  
Vol 123 (2) ◽  
pp. 164-169 ◽  
Author(s):  
Houneida Attia ◽  
Sarra Nouaili ◽  
Abdelaziz Soltani ◽  
Mokhtar Lachaâl


2012 ◽  
Vol 102 (3) ◽  
pp. 260-266 ◽  
Author(s):  
A. Martinuz ◽  
A. Schouten ◽  
R. A. Sikora

The root-knot nematode, Meloidogyne incognita, is among the most damaging agricultural pests, particularly to tomato. The mutualistic endophytes Fusarium oxysporum strain Fo162 (Fo162) and Rhizobium etli strain G12 (G12) have been shown to systemically induce resistance toward M. incognita. By using triple-split-root tomato plants, spatially separated but simultaneous inoculation of both endophytes did not lead to additive reductions in M. incognita infection. More importantly, spatially separated inoculation of Fo162 and G12 led to a reduction in Fo162 root colonization of 35 and 39% when G12 was inoculated on a separate root section of the same plant in two independent experiments. In an additional split-root experiment, spatial separation of Fo162 and G12 resulted in a reduction of Fo162 root colonization of approximately 50% over the water controls in two independent experiments. The results suggested that the suppressive activity of G12 on Fo162 and M. incognita is possibly related to the induction of specific plant defense mechanisms. Thus, although Fo162 and G12 have the ability to systemically repress M. incognita infection in tomato, they can be considered incompatible biocontrol agents when both organisms are present simultaneously on the same root system.



2004 ◽  
Vol 31 (10) ◽  
pp. 971 ◽  
Author(s):  
Darren M. Mingo ◽  
Julian C. Theobald ◽  
Mark A. Bacon ◽  
William J. Davies ◽  
Ian C. Dodd

Tomato (Lycopersicon esculentum Mill.) plants were grown in either a glasshouse (GH) or a controlled environment cabinet (CEC) to assess the effects of partial rootzone drying (PRD) on biomass allocation. Control and PRD plants received the same amounts of water. In control plants, water was equally distributed between two compartments of a split-root system. In PRD plants, only one compartment was watered while the other was allowed to dry. At the end of each drying cycle, wet and dry compartments were alternated. In the GH, total biomass did not differ between PRD and control plants after four cycles of PRD, but PRD increased root biomass by 55% as resources were partitioned away from shoot organs. In the CEC, leaf water potential did not differ between treatments at the end of either of two cycles of PRD, but stomatal conductance of PRD plants was 20% less at the end of the first cycle than at the beginning. After two cycles of PRD in the CEC, biomass did not differ between PRD and control plants, but PRD increased root biomass by 19% over the control plants. The promotion of root biomass in PRD plants was associated with the alternation of wet and dry compartments, with increased root biomass occurring in the re-watered compartment after previous exposure to soil drying. Promotion of root biomass in field-grown PRD plants may allow the root system to access resources (water and nutrients) that would otherwise be unavailable to control plants. This may contribute to the ability of PRD plants to maintain similar leaf water potentials to conventionally irrigated plants, even when smaller irrigation volumes are supplied.



2002 ◽  
Vol 27 (2) ◽  
pp. 141-150 ◽  
Author(s):  
RUI G. CARNEIRO ◽  
PAULO MAZZAFERA ◽  
LUIZ CARLOS C.B. FERRAZ ◽  
TAKASHI MURAOKA ◽  
PAULO CESAR O. TRIVELIN

Two soybean (Glycine max) cultivars were used in this study, Ocepar 4, rated as moderately resistant to Meloidogyne incognita race 3 but susceptible to M. javanica, and 'BR 16', susceptible to both nematodes. The effect of nematodes infection on the uptake and transport of N, P and Ca to the shoot was studied in plants growing in a split root system. The upper half was inoculated with 0, 3,000, 9,000 or 27,000 eggs/plant while the lower half received 15N, 32P or 45Ca. Infected plants showed an increase of root but a decrease of shoot mass with increasing inoculum levels. In general, total endogenous nutrients increased in the roots and tended to decrease in the shoots with increasing inoculum levels. When concentrations were calculated, there was an increase in the three nutrients in the roots, and an increase of Ca but no significant variation of N and P was observed in the shoots. The total amount of 15N in the roots increased at the highest inoculum levels but 32P and 45Ca decreased. In the shoots there was a reduction of 32P and 45Ca. The specific concentrations of the labelled nutrients (abundance or radioactivity/tissue mass) also showed a decrease of 32P and 45Ca in the shoots and roots of infected plants and an increase of 15N in the shoots. Considering that overall nutrient concentrations reflect cumulative nutrient uptake and the data from labelled elements gave information at a specific moment of the infection, thus nematodes do interfere with nutrient uptake and translocation.



Sign in / Sign up

Export Citation Format

Share Document