scholarly journals Pengaruh Rasio Karet Alam Terdeproteinisasi dengan Monomer Vinil terhadap Karakteristik Karet Alam Termoplastik

2016 ◽  
Vol 3 (1) ◽  
pp. 1
Author(s):  
Santi Puspitasari ◽  
Emil Budianto ◽  
Dadi Rusadi Maspanger

<em>Chemical modification of natural rubber latex by emulsion graft copolymerization with thermoplastic monomer produces thermoplastic natural rubber (TPNR). Ratio composition of natural rubber to thermoplastic monomer determines the TPNR properties. TPNR has good mechanical properties of natural rubber and high processability of plastic material thus enhancing its application in industry. The research, which was conducted at research laboratory of Indonesian Rubber Research Institute, from June to December 2014, aimed to study the effect of the ratio of deproteinized natural rubber (DPNR) latex to vinyl monomer (VM: methyl methacrylate and styrene) on physical and mechanical properties of TPNR produced from batch graft copolymerization. Batch graft copolymerization was conducted at certain ratios of DPNR latex with methyl methacrylate and styrene </em><em>(70:30; 60:40; and 50:50) at (65°C, 5 hours), and subsequently at (70°C, 1 hour)</em>.<em> The result showed that batch technique tend to cause the formation of homopolymer vinyl which also affected the TPNR properties. Visually, the TPNR had white color, hard and brittle texture yet easier to process as shown by low time and energy consumption during compounding. The ratio of DPNR to VM at 70:30 was regarded as the optimum ratio for its balanced properties between elastomeric material of DPNR and thermoplastic material of VM.</em>

2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Chatree Homkhiew ◽  
Surasit Rawangwong ◽  
Worapong Boonchouytan ◽  
Wiriya Thongruang ◽  
Thanate Ratanawilai

The aim of this work is to investigate the effects of rubberwood sawdust (RWS) size and content as well as the ratio of natural rubber (NR)/high-density polyethylene (HDPE) blend on properties of RWS reinforced thermoplastic natural rubber (TPNR) composites. The addition of RWS about 30–50 wt% improved the modulus of the rupture and tensile strength of TPNR composites blending with NR/HDPE ratios of 60/40 and 50/50. TPNR composites reinforced with RWS 80 mesh yielded better tensile strength and modulus of rupture than the composites with RWS 40 mesh. The TPNR/RWS composites with larger HDPE content gave higher tensile, flexural, and Shore hardness properties and thermal stability as well as lower water absorption. The TPNR/RWS composites with larger plastic content were therefore suggested for applications requiring high performance of thermal, physical, and mechanical properties.


2011 ◽  
Vol 239-242 ◽  
pp. 1601-1604 ◽  
Author(s):  
Xiao Xue Liao ◽  
Hai Sheng Tan ◽  
Ming Chao Luo ◽  
Bing Tang ◽  
Shuang Quan Liao ◽  
...  

The effects of the ratios of natural rubber latex (NRL)and chloroprene rubber latex(CRL) and the type of compatibilizer on physical and mechanical properties of latex film were researched.The oil resistance of vulcanized latex film was tested. The compatibility of the latex blends was also analyzed by TG/DTG method.The results showed that properties of latex film were best when ratio of NRL/CRL was 75/25. As the CRL content increased, oil resistance of latex film was improved. Epoxidized natural rubber latex improved compatibility of NRL and CRL blends.


2017 ◽  
Vol 866 ◽  
pp. 195-198
Author(s):  
Rakchanok Promudom ◽  
Suparut Narksitipan ◽  
Nittaya Jaitanong

The physical and mechanical properties of Portland cement (PC) - natural rubber latex (NRL) - fly ash (FA) composites have been investigated. The latex per cement ratios that use in this experiment are 0, 5, 7.5 and 10% by weight of cement. Portland cement (PC) was partially replaced with fly ash 0-40% by weight of binder. Water to cement ratio were used in range of 0.305-0.385 (by weight not include water in latex). Nonionic surfactant was added in cement before mixed with natural rubber latex. In addition, to provide latex from natural rubber latex, the ammonia solution is added into natural rubber. The specimens were packing into an iron mold which sample size of 4x4x16 cm3. Moreover, the PC-NRL-FA composites were cured in water for 7 and 28 days at room temperature before measurement. Then, mechanical properties (flexural strength) and microstructure were studied.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Thi Nhan Nguyen ◽  
Hieu Nguyen Duy ◽  
Dung Tran Anh ◽  
Thuong Nghiem Thi ◽  
Thu Ha Nguyen ◽  
...  

In this study, we investigated the improvement of the thermal and mechanical properties of Vietnam deproteinized natural rubber (DPNR) via graft copolymerization of methyl methacrylate (MMA). The graft copolymerization was achieved successfully in latex stage using tert-butyl hydroperoxide (TBHPO) and tetra-ethylenepentamine (TEPA) as radical initiators at 30°C. By grafting with various MMA feeds and initiator concentration of 6.6×10−5 mol/g-rubber, the highest grafting efficiency and conversion were achieved at MMA of 15 wt.% per kg of rubber, 68% and 90%, respectively. The structure of grafted copolymers was characterized by 1H NMR, FTIR-ATR, and GPC, and thermal properties were investigated through DSC and TGA measurements. These showed that graft copolymers were more stable and rigid than DPNR. Storage modulus (G′) of graft copolymer was found to double that of DPNR, which contributed to the formation of graft copolymer. After sulfur vulcanization, the mechanical properties of DPNR-graft-PMMA, such as tensile strength, tear strength, and hardness, were improved significantly. Curing behaviors of the graft copolymers were found to be remarkably better than virgin DPNR.


2012 ◽  
Vol 576 ◽  
pp. 394-397 ◽  
Author(s):  
Noor Azlina Hassan ◽  
Hassan Norita ◽  
Sahrim Haji Ahmad ◽  
Rozaidi Rasid ◽  
Hazleen Anuar ◽  
...  

Thermoplastic natural rubber (TPNR) nanocomposites were prepared by melt blending method with the optimum mixing parameters (140oC, 100 rpm, 12 min) using internal mixer (Haake 600 P). The aim of this work is to study the effects of organo-montmorillonite (OMMT) on the physical and mechanical properties of TPNR with and without coupling agent (maleic anhydride grafted polyethylene, MA-PE). Significant improvement in tensile strength and modulus of TPNR nanocomposites were obtained with the presence of MA-PE.


Sign in / Sign up

Export Citation Format

Share Document