The Ventilation Performance Analysis of a Fan-assisted Hybrid Ventilation System

Author(s):  
Jong-Eun Lee ◽  
Jae-Sik Kang ◽  
Yu-Min Kim
2020 ◽  
Vol 185 ◽  
pp. 107265
Author(s):  
Javier M. Rey-Hernández ◽  
Julio F. San José-Alonso ◽  
Eloy Velasco-Gómez ◽  
Charles Yousif ◽  
Francisco J. Rey-Martínez

2020 ◽  
Vol 38 (9A) ◽  
pp. 1257-1275
Author(s):  
Wisam M. Mareed ◽  
Hasanen M. Hussen

 Elevated CO2 rates in a building affect the health of the occupant. This paper deals with an experimental and numerical analysis conducted in a full-scale test room located in the Department of Mechanical Engineering at the University of Technology. The experiments and CFD were conducted for analyzing ventilation performance. It is a study on the effect of the discharge airflow rate of the ceiling type air-conditioner on ventilation performance in the lecture room with the mixing ventilation. Most obtained findings show that database and questionnaires analyzed prefer heights between 0.2 m to 1.2 m in the middle of an occupied zone and breathing zone height of between 0.75 m to 1.8 given in the literature surveyed. It is noticed the mismatch of internal conditions with thermal comfort, and indoor air quality recommended by [ASHRAE Standard 62, ANSI / ASHRAE Standard 55-2010]. CFD simulations have been carried to provide insights on the indoor air quality and comfort conditions throughout the classroom. Particle concentrations, thermal conditions, and modified ventilation system solutions are reported.


2018 ◽  
Vol 4 (7) ◽  
pp. 1521 ◽  
Author(s):  
Fang Lin

Construction ventilation system is divided into two stages based on completion status of shafts in the underground petroleum storage project in Jinzhou, China. With the help of theoretical analysis and numerical simulations by using FLUENT software, in the first stage, reasonable construction ventilation is designed and cases with different outside temperature are discussed to investigate the effect of ventilation performance. It is found that with temperature difference increases, peak value of CO concentration, exhausting time of dirty air and required time to meet the CO concentration qualification decrease, but the influence degree is quite limited. Gallery-type network ventilation technique (GNVT) refined from theories of operation ventilation for road tunnel and mining ventilation network, is proposed to conduct the second stage construction ventilation. Ventilation performance of different ventilation schemes with various shafts’ states and diverse arrangements of fans are also analyzed in this study. It turns out that Axial-GNVT with shafts taking in fresh air and access tunnel ejecting dirty air has much better performance than traditional forced ventilation from access tunnel. Improved energy saving scheme is finally adopted to guide the construction. In addition, it is worth mentioning that there is no need to build middle ventilation shafts and construct shafts as large and long as possible. Field test of wind speed, dust, poisonous gas, atmospheric pressure, temperature are performed to detect ventilation effectiveness. Reduction coefficient =0.69is obtained from the test results in consideration of super-large section and it also indicates that there is no difference if the axial fan is at the shaft mouth or in the bottom.


2018 ◽  
Vol 32 ◽  
pp. 01023
Author(s):  
Vasilica Vasile ◽  
Alina Dima ◽  
Elena Zorila ◽  
Andrei Istrate ◽  
Tiberiu Catalina

This paper investigates the air pollutions in space ventilated in two High School classrooms. The analysis consists of comparison of one classroom with hybrid ventilation system and another one stander-by classroom with natural ventilation. Several studies regarding indoor air quality during the experimental campaign have been done for VOC, CO2, CO, other pollutants, keeping monitored for humidity and temperature. The experimental demonstrated that the highest value for CO2 in stander-by classroom is 2691 ppm and in classroom with hybrid ventilation is 1897 ppm, while values for CO are 1.1 / 1.1 ppm and VOC 0.14 / 0.06 ppm, better use hybrid ventilation.


2005 ◽  
Vol 12 (4) ◽  
pp. 277-292 ◽  
Author(s):  
D J Oldham ◽  
Jian Kang ◽  
M W Brocklesby

The pressure differences that can be used to drive a natural ventilation system are very small and thus large apertures are required to allow sufficient air to enter and leave a building to ensure good air quality or thermal comfort. Large apertures are potential acoustic weak points on a façade and may require some form of acoustic treatment such as absorbent linings, in which case the ventilator is similar to a short section of lined duct. In ducts, the performance of absorbent linings increases with the length of lining and the ratio of the length of lined perimeter to the cross sectional area of the duct. Thus, for a duct of a given cross sectional area, a lining is more effective for a duct with a high aspect ratio than for a duct with a square cross section. However, the high aspect ratio cross section will result in greater flow resistance and impede the airflow performance. In this paper numerical methods are employed to investigate the effect of different configurations of a lined aperture on the acoustical and ventilation performance of the aperture in order to establish the optimum configurations.


Sign in / Sign up

Export Citation Format

Share Document