test house
Recently Published Documents


TOTAL DOCUMENTS

126
(FIVE YEARS 18)

H-INDEX

11
(FIVE YEARS 2)

2021 ◽  
Vol 2069 (1) ◽  
pp. 012185
Author(s):  
Marc Abadie ◽  
Zaid Romani ◽  
Michel Burlot ◽  
Jérôme Nicolle ◽  
Pierre Peigné ◽  
...  

Abstract This paper presents a summary of the main developments and results achieved in the frame-work of the French research project called EVAL-SDS. This project aims to analyse the performance of Natural, i.e. without use of fan for extraction, Soil Depressurization Systems (NSDS) to protect the built indoor environment from soil gaseous pollutant (Radon, Volatile Organic Compounds…). In this paper, the aeraulic performance of NSDS is studied i.e. its capacity to extract air from the ground to protect building’s occupants. To this end, we first performed measurements of airflow rates extracted by a NSDS integrated in a test-house during one year. Those data include various weather conditions (stack effect, wind) for several key parameters (wind extractor type, slab air permeability and basement pressure). Then, a dedicated calculation tool has been developed and validated against the experimental results. This numerical model has been used to evaluate the NSDS performance in France for different building heights and ventilation systems. The results show that NSDS succeed in creating a negative pressure under the building slab most of the time and that the extracted airflow rates can be enhanced by better design of wind extractor, association with mechanical insufflating ventilation system and thermal transfer from the building during the heating season.


2021 ◽  
Vol 2069 (1) ◽  
pp. 012228
Author(s):  
E B Møller ◽  
T Lading

Abstract DTU has established a single-family three-level test house in Nuuk, Greenland. The main idea of the house was to have a relatively small heated area but a split building envelope, where a ventilated space behind the rain screen in some areas could be used as a sunroom. This paper describes the process of transforming the architectural ideas to a test building. Main issues have been how to design the rain screen and how to ventilate the space behind the rain screen.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2197
Author(s):  
Nayara Rodrigues Marques Sakiyama ◽  
Jurgen Frick ◽  
Timea Bejat ◽  
Harald Garrecht

Predicting building air change rates is a challenge for designers seeking to deal with natural ventilation, a more and more popular passive strategy. Among the methods available for this task, computational fluid dynamics (CFD) appears the most compelling, in ascending use. However, CFD simulations require a range of settings and skills that inhibit its wide application. With the primary goal of providing a pragmatic CFD application to promote wind-driven ventilation assessments at the design phase, this paper presents a study that investigates natural ventilation integrating 3D parametric modeling and CFD. From pre- to post-processing, the workflow addresses all simulation steps: geometry and weather definition, including incident wind directions, a model set up, control, results’ edition, and visualization. Both indoor air velocities and air change rates (ACH) were calculated within the procedure, which used a test house and air measurements as a reference. The study explores alternatives in the 3D design platform’s frame to display and compute ACH and parametrically generate surfaces where air velocities are computed. The paper also discusses the effectiveness of the reference building’s natural ventilation by analyzing the CFD outputs. The proposed approach assists the practical use of CFD by designers, providing detailed information about the numerical model, as well as enabling the means to generate the cases, visualize, and post-process the results.


2021 ◽  
Vol 193 ◽  
pp. 107648
Author(s):  
Guoqing He ◽  
Qian Wu ◽  
Zhengguang Li ◽  
Wenqing Ge ◽  
Da Lv ◽  
...  

2020 ◽  
Vol 15 (1) ◽  
pp. 73-86
Author(s):  
Masa Noguchi ◽  
Koon Beng Ooi

ABSTRACT Fuel poverty is one of the global concerns affecting not only users' financial capacity or affordability for maintaining housing operation but also the occupants' health and wellbeing. Space heating and cooling require a relatively large amount of domestic energy use in housing. Therefore, this study was formed with the aim to propose an innovative approach to utilising free, clean renewable sources of energy applicable to the space heating and cooling of housing in both cold and hot regions. Accordingly, housing test facilities based in Melbourne, Australia, and Kuching, Malaysia, were selected and used for this study that examined the thermal performance of a proposed ‘hydronic radiator’ (HR) system through simulation and onsite measurements. The geothermal heat capacity of a ‘vertical ground heat exchanger’ (VGHE) installed in the house in Melbourne was examined previously by the authors and the VGHE measured data was also applied to this HR performance simulation. The water that circulates through the HRs is heated by sunlight and VGHE or cooled by night sky radiation. This study drew conclusions that the sole utilisation of renewable sources through these proposed HR space heating and cooling systems can provide thermally accessible or comfortable indoor living environments in both heating or cooling dominant regions. Thus, fuel poverty issues may be alleviated through HR system application. The HRs can remove a ‘sensible’ portion of metabolic heat, but they cannot effectively contribute to the ‘latent’ heat removal. Thus, the future potential use or effect of ‘flow-through’ HRs, which are integrated into a underfloor air distribution (UFAD) plenum, was also dsicussed in this study. In the test house located in Melbourne, the flow-through HR UFAD system is currently under development. Therefore, the performance will be measured once the system has come into operation for further testing.


2020 ◽  
Vol 172 ◽  
pp. 07008
Author(s):  
Martin Morelli ◽  
Eva Møller ◽  
Thor Hansen

A recently Danish study reported that no vapour barrier is needed in ceilings, if the attic is well ventilated and the ceiling towards the dwelling is airtight. Based on that study, new investigations were initiated with focus on the hygrothermal behaviour in ventilated attics with different air change rates. A test house with three sets of four different ceiling constructions – all airtight – was used in this study. The ventilation rate was reduced in two of the sets with approx. 35 % and 50 %, respectively. Air change rates were measured with tracer gas. Furthermore, temperature and relative humidity was measured every hour. Measurements in similar ceilings with mineral wool or cellulose-based insulation material show that hygroscopic properties of the insulation have very limited effect on relative humidity. Furthermore, only at low ventilation rate the effect of a vapour barrier could be measured with minor impact. Based on the short-measured period the calculations of the risk of mould growth showed no risk. The results indicate that even when the ventilation is reduced by 50 %, the ventilated attic still performs well if the ceiling is highly airtight. However, the importance of vapour barriers becomes more important at lower air change rates.


2020 ◽  
Vol 172 ◽  
pp. 08004
Author(s):  
Ulrich Ruisinger ◽  
Peter Kautsch

This article examines whether transient two-dimensional simulations are sufficient or three-dimensional simulations are necessary for the hygrothermal analysis of the three-dimensional detail of a beam support. Detailed measurement series from a test house with various interior insulation systems available for the investigation allow the results of two- and three-dimensional simulations to be verified with the measured data. In both the cases, a very good agreement between measurement and simulations was found. With the thermal simulations, agreement with the measured data is similar in both two- and three-dimensional calculations. However, the hygric measurements agreed slightly better with the three-dimensional calculations. For planning real tasks, two-dimensional simulations should be sufficient, provided that the simulation settings are selected within the secure margins. The actual comparison is initiated by the validation of the software DELPHIN 6 by means of a three-dimensional, stationary test case from EN 10211.


Sign in / Sign up

Export Citation Format

Share Document