scholarly journals Combining landslide susceptibility maps and rainfall thresholds using a matrix approach

2017 ◽  
Vol 19 (1) ◽  
pp. 58-74
Author(s):  
THIEBES Benni ◽  
BAI Shibiao ◽  
XI Yanan ◽  
GLADE Thomas ◽  
BELL Rainer

On the regional scale, investigations on future landslide can broadly be distinguished in spatial or temporal analyses, i.e. landslide susceptibility or hazard maps, and landslide triggering rainfall thresholds. Even though both approaches have its uses e.g. in spatial planning, risk management and early warning, they also have limitations. Susceptibility and hazard maps do not contain information on when landslides will be triggered, while rainfall thresholds give no detailed indication on where a landslide might take place. The combination of spatial and temporal landslide research remains a complex issue and no ready-to-use methodology for combined spatiotemporal landslide analyses is presently available. In our study, we present a simple matrix approach to combine spatial and temporal landslide probabilities and highlight its application for a case study in the Wudu region, China. Landslide susceptibility mapping is based on a previous study involving logistic regression; the analysis of rainfall threshold was carried out applying the daily rainfall model. A 4x4 matrix was used to combine and reclassify the spatial and temporal landslide information. The results are then plotted on a map to highlight the susceptibility for rainfall events with varying likelihood of triggering landslides.

Water ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 267 ◽  
Author(s):  
Abhirup Dikshit ◽  
Raju Sarkar ◽  
Biswajeet Pradhan ◽  
Ratiranjan Jena ◽  
Dowchu Drukpa ◽  
...  

Landslides are one of the major natural disasters that Bhutan faces every year. The monsoon season in Bhutan is usually marked by heavy rainfall, which leads to multiple landslides, especially across the highways, and affects the entire transportation network of the nation. The determinations of rainfall thresholds are often used to predict the possible occurrence of landslides. A rainfall threshold was defined along Samdrup Jongkhar–Trashigang highway in eastern Bhutan using cumulated event rainfall and antecedent rainfall conditions. Threshold values were determined using the available daily rainfall and landslide data from 2014 to 2017, and validated using the 2018 dataset. The threshold determined was used to estimate temporal probability using a Poisson probability model. Finally, a landslide susceptibility map using the analytic hierarchy process was developed for the highway to identify the sections of the highway that are more susceptible to landslides. The accuracy of the model was validated using the area under the receiver operating characteristic curves. The results presented here may be regarded as a first step towards understanding of landslide hazards and development of an early warning system for a region where such studies have not previously been conducted.


2019 ◽  
Vol 19 (4) ◽  
pp. 775-789 ◽  
Author(s):  
Elise Monsieurs ◽  
Olivier Dewitte ◽  
Alain Demoulin

Abstract. Rainfall threshold determination is a pressing issue in the landslide scientific community. While major improvements have been made towards more reproducible techniques for the identification of triggering conditions for landsliding, the now well-established rainfall intensity or event-duration thresholds for landsliding suffer from several limitations. Here, we propose a new approach of the frequentist method for threshold definition based on satellite-derived antecedent rainfall estimates directly coupled with landslide susceptibility data. Adopting a bootstrap statistical technique for the identification of threshold uncertainties at different exceedance probability levels, it results in thresholds expressed as AR = (α±Δα)⋅S(β±Δβ), where AR is antecedent rainfall (mm), S is landslide susceptibility, α and β are scaling parameters, and Δα and Δβ are their uncertainties. The main improvements of this approach consist in (1) using spatially continuous satellite rainfall data, (2) giving equal weight to rainfall characteristics and ground susceptibility factors in the definition of spatially varying rainfall thresholds, (3) proposing an exponential antecedent rainfall function that involves past daily rainfall in the exponent to account for the different lasting effect of large versus small rainfall, (4) quantitatively exploiting the lower parts of the cloud of data points, most meaningful for threshold estimation, and (5) merging the uncertainty on landslide date with the fit uncertainty in a single error estimation. We apply our approach in the western branch of the East African Rift based on landslides that occurred between 2001 and 2018, satellite rainfall estimates from the Tropical Rainfall Measurement Mission Multi-satellite Precipitation Analysis (TMPA 3B42 RT), and the continental-scale map of landslide susceptibility of Broeckx et al. (2018) and provide the first regional rainfall thresholds for landsliding in tropical Africa.


2021 ◽  
Author(s):  
Samuele Segoni ◽  
Minu Treesa Abraham ◽  
Neelima Satyam ◽  
Ascanio Rosi ◽  
Biswajeet Pradhan

<p>SIGMA (Sistema Integrato Gestione Monitoraggio Allerta – integrated system for management, monitoring and alerting) is a landslide forecasting model at regional scale which is operational in Emilia Romagna (Italy) for more than 20 years. It was conceived to be operated with a sparse rain gauge network with coarse (daily) temporal resolution and to account for both shallow landslides (typically triggered by short and intense rainstorms) and deep seated landslides (typically triggered by long and less intense rainfalls). SIGMA model is based on the statistical distribution of cumulative rainfall values (calculated over varying time windows), and rainfall thresholds are defined as the multiples of standard deviation of the same, to identify anomalous rainfalls with the potential of triggering landslides.</p><p>In this study, SIGMA model is applied for the first time in a geographical location outside of Italy, i.e. Kalimpong town in India. The SIGMA algorithm is customized using the historical rainfall and landslide data of Kalimpong from 2010 to 2015 and has been validated using the data from 2016 to 2017. The model was validated by building a confusion matrix and calculating statistical skill scores, which were compared with those of the state-of-the-art intensity-duration rainfall thresholds derived for the region.</p><p>Results of the comparison clearly show that SIGMA performs much better than the other models in forecasting landslides: all instances of the validation confusion matrix are improved, and all skill scores are higher than I-D thresholds, with an efficiency of 92% and a likelihood ratio of 11.28. We explain this outcome mainly with technical characteristics of the site: when only daily rainfall measurements from a spare gauge network are available, SIGMA outperforms other approaches based on peak measurements, like intensity – duration thresholds, which cannot be captured adequately by daily measurements. SIGMA model thus showed a good potential to be used as a part of the local Landslide Early Warning System (LEWS).</p>


Author(s):  
Bappaditya Koley ◽  
Anindita Nath ◽  
Subhajit Saraswati ◽  
Kaushik Bandyopadhyay ◽  
Bidhan Chandra Ray

Land sliding is a perennial problem in the Eastern Himalayas. Out of 0.42 million km2 of Indian landmass prone to landslide, 42% fall in the North East Himalaya, specially Darjeeling and Sikkim Himalaya. Most of these landslides are triggered by excessive monsoon rainfall between June and October in almost every year. Various attempts in the global scenario have been made to establish rainfall thresholds in terms of intensity – duration of antecedent rainfall models on global, regional and local scale for triggering of the landslide. This paper describes local aspect of rainfall threshold for landslides based on daily rainfall data in and around north Sikkim road corridor region. Among 210 Landslides occurring from 2010 to 2016 were studied to analyze rainfall thresholds. Out of the 210 landslides, however, only 155 Landslides associated with rainfall data which were analyzed to yield a threshold relationship between rainfall intensity-duration and landslide initiation. The threshold relationship determined fits to lower boundary of the Landslide triggering rainfall events is I = 4.045 D - 0.25 (I=rainfall intensity (mm/h) and D=duration in (h)), revealed that for rainfall event of short time (24 h) duration with a rainfall intensity of 1.82 mm/h, the risk of landslides on this road corridor of the terrain is expected to be high. It is also observed that an intensity of 58 mm and 139 mm for 10-day and 20-day antecedent rainfall are required for the initiation of landslides in the study area. This threshold would help in improvement on traffic guidance and provide safety to the travelling tourists in this road corridor during the monsoon.


2020 ◽  
Author(s):  
Sandip Som ◽  
Saibal Ghosh ◽  
Soumitra Dasgupta ◽  
Thrideep Kumar ◽  
J. N. Hindayar ◽  
...  

Abstract Modeling landslide susceptibility is one of the important aspects of land use planning and risk management. Several modeling methods are available based either on highly specialized knowledge on causative attributes or on good landslide inventory data to use as training and testing attribute on model development. Understandably, these two criteria are rarely available for local land regulators. This paper presents a new model methodology, which requires minimum knowledge of causative attributes and does not depend on landslide inventory. As landslide causes due to the combined effect of causative attributes, this model utilizes communality (common variance) of the attributes, extracted by exploratory factor analysis and used for calculation of landslide susceptibility index. The model can understand the inter-relationship of different geo-environmental attributes responsible for landslide along with identification and prioritization of attributes on model performance to delineate non-performing attributes. Finally, the model performance is compared with the well established AHP method (knowledge driven) and FRM method (data driven) by cut-off independent ROC curves along with cost-effectiveness. The model shows it’s performance almost at par with the established models, involving minimum modeling expertise. The findings and results of the present work will be helpful for the town planners and engineers on a regional scale for generalized planning and assessment.


Water ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 1195 ◽  
Author(s):  
Minu Treesa Abraham ◽  
Neelima Satyam ◽  
Sai Kushal ◽  
Ascanio Rosi ◽  
Biswajeet Pradhan ◽  
...  

Rainfall-induced landslides are among the most devastating natural disasters in hilly terrains and the reduction of the related risk has become paramount for public authorities. Between the several possible approaches, one of the most used is the development of early warning systems, so as the population can be rapidly warned, and the loss related to landslide can be reduced. Early warning systems which can forecast such disasters must hence be developed for zones which are susceptible to landslides, and have to be based on reliable scientific bases such as the SIGMA (sistema integrato gestione monitoraggio allerta—integrated system for management, monitoring and alerting) model, which is used in the regional landslide warning system developed for Emilia Romagna in Italy. The model uses statistical distribution of cumulative rainfall values as input and rainfall thresholds are defined as multiples of standard deviation. In this paper, the SIGMA model has been applied to the Kalimpong town in the Darjeeling Himalayas, which is among the regions most affected by landslides. The objectives of the study is twofold: (i) the definition of local rainfall thresholds for landslide occurrences in the Kalimpong region; (ii) testing the applicability of the SIGMA model in a physical setting completely different from one of the areas where it was first conceived and developed. To achieve these purposes, a calibration dataset of daily rainfall and landslides from 2010 to 2015 has been used; the results have then been validated using 2016 and 2017 data, which represent an independent dataset from the calibration one. The validation showed that the model correctly predicted all the reported landslide events in the region. Statistically, the SIGMA model for Kalimpong town is found to have 92% efficiency with a likelihood ratio of 11.28. This performance was deemed satisfactory, thus SIGMA can be integrated with rainfall forecasting and can be used to develop a landslide early warning system.


2021 ◽  
Author(s):  
Sansar Raj Meena ◽  
Silvia Puliero ◽  
Kushanav Bhuyan ◽  
Mario Floris ◽  
Filippo Catani

Abstract. In the domain of landslide risk science, landslide susceptibility mapping (LSM) is very important as it helps spatially identify potential landslide-prone regions. This study used a statistical ensemble model (Frequency Ratio and Evidence Belief Function) and two machine learning (ML) models (Random Forest and XG-Boost) for LSM in the Belluno province (Veneto Region, NE Italy). The study investigated the importance of the conditioning factors in predicting landslide occurrences using the mentioned models. In this paper, we evaluated the importance of the conditioning factors (features) in the overall prediction capabilities of the statistical and ML algorithms. By the trial-and-error method, we eliminated the least "important" features by using a common threshold. Conclusively, we found that removing the least "important" features does not impact the overall accuracy of the LSM for all three models. Based on the results of our study, the most commonly available features, for example, the topographic features, contributes to comparable results after removing the least "important" ones. This confirms that the requirement for the important factor maps can be assessed based on the physiography of the region. Based on the analysis of the three models, it was observed that most commonly available feature data can be useful for carrying out LSM at regional scale, eliminating the least available ones in most of the use cases due to data scarcity. Identifying LSMs at regional scale has implications for understanding landslide phenomena in the region and post-event relief measures, planning disaster risk reduction, mitigation, and evaluating potentially affected areas.


Sign in / Sign up

Export Citation Format

Share Document