scholarly journals Assessing the importance of feature selection in Landslide Susceptibility for Belluno province (Veneto Region, NE Italy)

2021 ◽  
Author(s):  
Sansar Raj Meena ◽  
Silvia Puliero ◽  
Kushanav Bhuyan ◽  
Mario Floris ◽  
Filippo Catani

Abstract. In the domain of landslide risk science, landslide susceptibility mapping (LSM) is very important as it helps spatially identify potential landslide-prone regions. This study used a statistical ensemble model (Frequency Ratio and Evidence Belief Function) and two machine learning (ML) models (Random Forest and XG-Boost) for LSM in the Belluno province (Veneto Region, NE Italy). The study investigated the importance of the conditioning factors in predicting landslide occurrences using the mentioned models. In this paper, we evaluated the importance of the conditioning factors (features) in the overall prediction capabilities of the statistical and ML algorithms. By the trial-and-error method, we eliminated the least "important" features by using a common threshold. Conclusively, we found that removing the least "important" features does not impact the overall accuracy of the LSM for all three models. Based on the results of our study, the most commonly available features, for example, the topographic features, contributes to comparable results after removing the least "important" ones. This confirms that the requirement for the important factor maps can be assessed based on the physiography of the region. Based on the analysis of the three models, it was observed that most commonly available feature data can be useful for carrying out LSM at regional scale, eliminating the least available ones in most of the use cases due to data scarcity. Identifying LSMs at regional scale has implications for understanding landslide phenomena in the region and post-event relief measures, planning disaster risk reduction, mitigation, and evaluating potentially affected areas.

2019 ◽  
Vol 8 (12) ◽  
pp. 545 ◽  
Author(s):  
Nayyer Saleem ◽  
Md. Enamul Huq ◽  
Nana Yaw Danquah Twumasi ◽  
Akib Javed ◽  
Asif Sajjad

Digital elevation models (DEMs) are considered an imperative tool for many 3D visualization applications; however, for applications related to topography, they are exploited mostly as a basic source of information. In the study of landslide susceptibility mapping, parameters or landslide conditioning factors are deduced from the information related to DEMs, especially elevation. In this paper conditioning factors related with topography are analyzed and the impact of resolution and accuracy of DEMs on these factors is discussed. Previously conducted research on landslide susceptibility mapping using these factors or parameters through exploiting different methods or models in the last two decades is reviewed, and modern trends in this field are presented in a tabulated form. Two factors or parameters are proposed for inclusion in landslide inventory list as a conditioning factor and a risk assessment parameter for future studies.


2021 ◽  
Vol 13 (6) ◽  
pp. 1157
Author(s):  
Yimo Liu ◽  
Wanchang Zhang ◽  
Zhijie Zhang ◽  
Qiang Xu ◽  
Weile Li

Landslide susceptibility mapping is an effective approach for landslide risk prevention and assessments. The occurrence of slope instability is highly correlated with intrinsic variables that contribute to the occurrence of landslides, such as geology, geomorphology, climate, hydrology, etc. However, feature selection of those conditioning factors to constitute datasets with optimal predictive capability effectively and accurately is still an open question. The present study aims to examine further the integration of the selected landslide conditioning factors with Q-statistic in Geo-detector for determining stratification and selection of landslide conditioning factors in landslide risk analysis as to ultimately optimize landslide susceptibility model prediction. The location chosen for the study was Atsuma Town, which suffered from landslides following the Eastern Iburi Earthquake in 2018 in Hokkaido, Japan. A total of 13 conditioning factors were obtained from different sources belonging to six categories: geology, geomorphology, seismology, hydrology, land cover/use and human activity; these were selected to generate the datasets for landslide susceptibility mapping. The original datasets of landslide conditioning factors were analyzed with Q-statistic in Geo-detector to examine their explanatory powers regarding the occurrence of landslides. A Random Forest (RF) model was adopted for landslide susceptibility mapping. Subsequently, four subsets, including the Manually delineated landslide Points with 9 features Dataset (MPD9), the Randomly delineated landslide Points with 9 features Dataset (RPD9), the Manually delineated landslide Points with 13 features Dataset (MPD13), and the Randomly delineated landslide Points with 13 features Dataset (RPD13), were selected by an analysis of Q-statistic for training and validating the Geo-detector-RF- integrated model. Overall, using dataset MPD9, the Geo-detector-RF-integrated model yielded the highest prediction accuracy (89.90%), followed by using dataset MPD13 (89.53%), dataset RPD13 (88.63%) and dataset RPD9 (87.07%), which implied that optimized conditioning factors can effectively improve the prediction accuracy of landslide susceptibility mapping.


2021 ◽  
Vol 13 (11) ◽  
pp. 2166
Author(s):  
Xin Yang ◽  
Rui Liu ◽  
Mei Yang ◽  
Jingjue Chen ◽  
Tianqiang Liu ◽  
...  

This study proposed a new hybrid model based on the convolutional neural network (CNN) for making effective use of historical datasets and producing a reliable landslide susceptibility map. The proposed model consists of two parts; one is the extraction of landslide spatial information using two-dimensional CNN and pixel windows, and the other is to capture the correlated features among the conditioning factors using one-dimensional convolutional operations. To evaluate the validity of the proposed model, two pure CNN models and the previously used methods of random forest and a support vector machine were selected as the benchmark models. A total of 621 earthquake-triggered landslides in Ludian County, China and 14 conditioning factors derived from the topography, geological, hydrological, geophysical, land use and land cover data were used to generate a geospatial dataset. The conditioning factors were then selected and analyzed by a multicollinearity analysis and the frequency ratio method. Finally, the trained model calculated the landslide probability of each pixel in the study area and produced the resultant susceptibility map. The results indicated that the hybrid model benefitted from the features extraction capability of the CNN and achieved high-performance results in terms of the area under the receiver operating characteristic curve (AUC) and statistical indices. Moreover, the proposed model had 6.2% and 3.7% more improvement than the two pure CNN models in terms of the AUC, respectively. Therefore, the proposed model is capable of accurately mapping landslide susceptibility and providing a promising method for hazard mitigation and land use planning. Additionally, it is recommended to be applied to other areas of the world.


2020 ◽  
Author(s):  
Sandip Som ◽  
Saibal Ghosh ◽  
Soumitra Dasgupta ◽  
Thrideep Kumar ◽  
J. N. Hindayar ◽  
...  

Abstract Modeling landslide susceptibility is one of the important aspects of land use planning and risk management. Several modeling methods are available based either on highly specialized knowledge on causative attributes or on good landslide inventory data to use as training and testing attribute on model development. Understandably, these two criteria are rarely available for local land regulators. This paper presents a new model methodology, which requires minimum knowledge of causative attributes and does not depend on landslide inventory. As landslide causes due to the combined effect of causative attributes, this model utilizes communality (common variance) of the attributes, extracted by exploratory factor analysis and used for calculation of landslide susceptibility index. The model can understand the inter-relationship of different geo-environmental attributes responsible for landslide along with identification and prioritization of attributes on model performance to delineate non-performing attributes. Finally, the model performance is compared with the well established AHP method (knowledge driven) and FRM method (data driven) by cut-off independent ROC curves along with cost-effectiveness. The model shows it’s performance almost at par with the established models, involving minimum modeling expertise. The findings and results of the present work will be helpful for the town planners and engineers on a regional scale for generalized planning and assessment.


Water ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1402 ◽  
Author(s):  
Nohani ◽  
Moharrami ◽  
Sharafi ◽  
Khosravi ◽  
Pradhan ◽  
...  

Landslides are the most frequent phenomenon in the northern part of Iran, which cause considerable financial and life damages every year. One of the most widely used approaches to reduce these damages is preparing a landslide susceptibility map (LSM) using suitable methods and selecting the proper conditioning factors. The current study is aimed at comparing four bivariate models, namely the frequency ratio (FR), Shannon entropy (SE), weights of evidence (WoE), and evidential belief function (EBF), for a LSM of Klijanrestagh Watershed, Iran. Firstly, 109 locations of landslides were obtained from field surveys and interpretation of aerial photographs. Then, the locations were categorized into two groups of 70% (74 locations) and 30% (35 locations), randomly, for modeling and validation processes, respectively. Then, 10 conditioning factors of slope aspect, curvature, elevation, distance from fault, lithology, normalized difference vegetation index (NDVI), distance from the river, distance from the road, the slope angle, and land use were determined to construct the spatial database. From the results of multicollinearity, it was concluded that no collinearity existed between the 10 considered conditioning factors in the occurrence of landslides. The receiver operating characteristic (ROC) curve and the area under the curve (AUC) were used for validation of the four achieved LSMs. The AUC results introduced the success rates of 0.8, 0.86, 0.84, and 0.85 for EBF, WoE, SE, and FR, respectively. Also, they indicated that the rates of prediction were 0.84, 0.83, 0.82, and 0.79 for WoE, FR, SE, and EBF, respectively. Therefore, the WoE model, having the highest AUC, was the most accurate method among the four implemented methods in identifying the regions at risk of future landslides in the study area. The outcomes of this research are useful and essential for the government, planners, decision makers, researchers, and general land-use planners in the study area.


Author(s):  
Yue Wang ◽  
Deliang Sun ◽  
Haijia Wen ◽  
Hong Zhang ◽  
Fengtai Zhang

To compare the random forest (RF) model and the frequency ratio (FR) model for landslide susceptibility mapping (LSM), this research selected Yunyang Country as the study area for its frequent natural disasters; especially landslides. A landslide inventory was built by historical records; satellite images; and extensive field surveys. Subsequently; a geospatial database was established based on 987 historical landslides in the study area. Then; all the landslides were randomly divided into two datasets: 70% of them were used as the training dataset and 30% as the test dataset. Furthermore; under five primary conditioning factors (i.e., topography factors; geological factors; environmental factors; human engineering activities; and triggering factors), 22 secondary conditioning factors were selected to form an evaluation factor library for analyzing the landslide susceptibility. On this basis; the RF model training and the FR model mathematical analysis were performed; and the established models were used for the landslide susceptibility simulation in the entire area of Yunyang County. Next; based on the analysis results; the susceptibility maps were divided into five classes: very low; low; medium; high; and very high. In addition; the importance of conditioning factors was ranked and the influence of landslides was explored by using the RF model. The area under the curve (AUC) value of receiver operating characteristic (ROC) curve; precision; accuracy; and recall ratio were used to analyze the predictive ability of the above two LSM models. The results indicated a difference in the performances between the two models. The RF model (AUC = 0.988) performed better than the FR model (AUC = 0.716). Moreover; compared with the FR model; the RF model showed a higher coincidence degree between the areas in the high and the very low susceptibility classes; on the one hand; and the geographical spatial distribution of historical landslides; on the other hand. Therefore; it was concluded that the RF model was more suitable for landslide susceptibility evaluation in Yunyang County; because of its significant model performance; reliability; and stability. The outcome also provided a theoretical basis for application of machine learning techniques (e.g., RF) in landslide prevention; mitigation; and urban planning; so as to deliver an adequate response to the increasing demand for effective and low-cost tools in landslide susceptibility assessments.


Sign in / Sign up

Export Citation Format

Share Document