TRACE FOSSIL ASSEMBLAGES IN MIDDLE TRIASSIC MARGINAL MARINE DEPOSITS, EASTERN BORDER OF THE MASSIF CENTRAL, FRANCE

1985 ◽  
pp. 53-66 ◽  
Author(s):  
GEORGES R. DEMATHIEU
2014 ◽  
Vol 64 (4) ◽  
pp. 367-392 ◽  
Author(s):  
Karolína Lajblová ◽  
Petr Kraft

Abstract The earliest ostracods from the Bohemian Massif (Central European Variscides) have been recorded from the Middle Ordovician of the Prague Basin (Barrandian area), in the upper Klabava Formation, and became an abundant component of fossil assemblages in the overlying Šarka Formation. Both early ostracod associations consist of eight species in total, representing mainly eridostracans, palaeocopids, and binodicopids. The revision, description, or redescription of all species and their distribution in the basin is provided. Their diversification patterns and palaeogeographical relationships to ostracod assemblages from other regions are discussed.


Paleobiology ◽  
2011 ◽  
Vol 37 (4) ◽  
pp. 696-709 ◽  
Author(s):  
Kenny J. Travouillon ◽  
Gilles Escarguel ◽  
Serge Legendre ◽  
Michael Archer ◽  
Suzanne J. Hand

Minimum Sample Richness (MSR) is defined as the smallest number of taxa that must be recorded in a sample to achieve a given level of inter-assemblage classification accuracy. MSR is calculated from known or estimated richness and taxonomic similarity. Here we test MSR for strengths and weaknesses by using 167 published mammalian local faunas from the Paleogene and early Neogene of the Quercy and Limagne area (Massif Central, southwestern France), and then apply MSR to 84 Oligo-Miocene faunas from Riversleigh, northwestern Queensland, Australia. In many cases, MSR is able to detect the assemblages in the data set that are potentially too incomplete to be used in a similarity-based comparative taxonomic analysis. The results show that the use of MSR significantly improves the quality of the clustering of fossil assemblages. We conclude that this method can screen sample assemblages that are not representative of their underlying original living communities. Ultimately, it can be used to identify which assemblages require further sampling before being included in a comparative analysis.


2020 ◽  
Vol 90 (7) ◽  
pp. 701-712
Author(s):  
Kasper H. Blinkenberg ◽  
Bodil W. Lauridsen ◽  
Dirk Knaust ◽  
Lars Stemmerik

ABSTRACT The Cenomanian–Danian Chalk Group of NW Europe is characterized by distinct trace-fossil assemblages dominated by Thalassinoides isp., Planolites isp., Zoophycos isp., and Chondrites isp., whereas ichnogenera such as Taenidium and Phycosiphon are rare. The trace fossils form a complex tiering arrangement, which reflects burrowing activities of diverse benthic associations that operate at different levels in the sediment column, dynamic sedimentation rates, and changes in substrate hardness during progressive burial, forming intricate ichnofabrics. In the Danish Basin, studies of chalk ichnofabrics have focused mainly on the Maastrichtian. Studies of the shallower, grain-rich Danian chalk have revealed similar trace-fossil assemblages, whereas the ichnology of the fine-grained, deeper-water Danian deposits is poorly known. Based on detailed facies and ichnofabric analysis of a mid-Danian silica-rich, pelagic chalk located in the central, deeper shelf area of the Danish Basin, four facies types, eight ichnotaxa, and two ichnofabrics are recognized. Most conspicuous and abundant are randomly distributed, variously sized meniscate burrows attributed to Bichordites isp. and Taenidium isp., whereas other common chalk trace fossils are rare or absent. This trace-fossil assemblage outlines two new ichnofabrics in the NW European chalk, which are dominated principally by upper-tier traces. The producer of the abundant Bichordites isp. and Taenidium isp. burrows is identified as a sea urchin on the basis of an exceptionally preserved Bichordites isp. trace aligned with an irregular echinoid body fossil. The identified ichnofabrics controlled early silicification and produced a more complex distribution of silica concretions compared with chalk successions elsewhere. This results in volumetrically thick silica concretion-rich units rather than distinctive silica bands as seen in other Upper Cretaceous and Danian chalk units.


Sign in / Sign up

Export Citation Format

Share Document