New ichnofabrics of the Cenomanian–Danian Chalk Group

2020 ◽  
Vol 90 (7) ◽  
pp. 701-712
Author(s):  
Kasper H. Blinkenberg ◽  
Bodil W. Lauridsen ◽  
Dirk Knaust ◽  
Lars Stemmerik

ABSTRACT The Cenomanian–Danian Chalk Group of NW Europe is characterized by distinct trace-fossil assemblages dominated by Thalassinoides isp., Planolites isp., Zoophycos isp., and Chondrites isp., whereas ichnogenera such as Taenidium and Phycosiphon are rare. The trace fossils form a complex tiering arrangement, which reflects burrowing activities of diverse benthic associations that operate at different levels in the sediment column, dynamic sedimentation rates, and changes in substrate hardness during progressive burial, forming intricate ichnofabrics. In the Danish Basin, studies of chalk ichnofabrics have focused mainly on the Maastrichtian. Studies of the shallower, grain-rich Danian chalk have revealed similar trace-fossil assemblages, whereas the ichnology of the fine-grained, deeper-water Danian deposits is poorly known. Based on detailed facies and ichnofabric analysis of a mid-Danian silica-rich, pelagic chalk located in the central, deeper shelf area of the Danish Basin, four facies types, eight ichnotaxa, and two ichnofabrics are recognized. Most conspicuous and abundant are randomly distributed, variously sized meniscate burrows attributed to Bichordites isp. and Taenidium isp., whereas other common chalk trace fossils are rare or absent. This trace-fossil assemblage outlines two new ichnofabrics in the NW European chalk, which are dominated principally by upper-tier traces. The producer of the abundant Bichordites isp. and Taenidium isp. burrows is identified as a sea urchin on the basis of an exceptionally preserved Bichordites isp. trace aligned with an irregular echinoid body fossil. The identified ichnofabrics controlled early silicification and produced a more complex distribution of silica concretions compared with chalk successions elsewhere. This results in volumetrically thick silica concretion-rich units rather than distinctive silica bands as seen in other Upper Cretaceous and Danian chalk units.

2021 ◽  
Vol 71 ◽  
pp. 23-46
Author(s):  
Mazlan Madon ◽  

In the “flysch” series of the West Crocker Formation (Eocene–Oligocene), Kota Kinabalu, Sabah, trace fossils are fairly common although not ubiquitous. The trace fossils commonly occur as hypichnial semi- or full-reliefs on the sole of thin turbiditic sandstone beds (mainly Bouma Tc division) in the thinly bedded heterolithic sandstone-mudstone facies interpreted as submarine fan lobe deposits. Their presence in mainly the thinly bedded facies of the fan system suggests preferential production and preservation in the fine-grained “distal” parts of the Crocker submarine fan system. Trace fossil assemblages characteristic of the Nereites ichnofacies indicate sedimentary environments mainly in bathyal to abyssal water depths (>2000 m). This ichnofacies is dominated by horizontal grazing, farming and feeding traces, ranging from solitary to branching tubular burrows (Ophiomorpha, Palaeophycus and Planolites) to meandering trails and tunnels (Nereites, Cosmorhaphe, Helminthopsis), as well as the spiriform burrows Spirophycus. Graphoglyptids are the most diagnostic of the Nereites ichnofacies, produced by sediment grazers and farmers (agrichnia) and often displaying intricate networks of mainly horizontal tunnels preserved as hypichnial semi-reliefs. They include the delicate spiral traces of Spirorhaphe, as well as the enigmatic hexagonal network burrow Paleodictyon. Other ichnogenera include Planolites, Thalassinoides and Ophiomorpha which are facies-crossing and not environment specific. Detailed observations of the trace fossil assemblages and the degree of bioturbation enabled different sub-ichnofacies of the Nereites ichnofacies to be distinguished. Ophiomorpha is more common in sandy “proximal” facies and tend to penetrate deeply into pre-existing turbidite beds, its presence suggests a well-oxygenated newly deposited turbidite substrate, probably in the axial region of the fan lobes. Hence, channel axis and proximal fan deposits tend to be dominated by the Ophiomorpha rudis sub-ichnofacies. The Paleodictyon sub-ichnofacies is more typical of the lower energy lobe/fan fringe subenvironments. Proximal but off-axis areas are characterized by a mixture of the Ophiomorpha rudis and Paleodictyon sub-ichnofacies.


2021 ◽  
pp. 1-18
Author(s):  
Martin G. Lockley ◽  
Charles W. Helm ◽  
Hayley C. Cawthra ◽  
Jan C. De Vynck ◽  
Michael R. Perrin

Abstract More than 250 Pleistocene vertebrate trace fossil sites have been identified on the Cape south coast of South Africa in aeolianites and cemented foreshore deposits. These discoveries, representing the epifaunal tracks of animals that moved over these sand substrates, complement traditional body fossil studies, and contribute to palaeo-environmental reconstruction. Not described in detail until now, but also important faunal components, are the infaunal traces of animals that moved within these sandy substrates. Six golden mole burrow trace sites (Family Chrysochloridae) have been identified on the Cape south coast. In addition, three sites, including one on the Cape southeast coast, have been identified that show evidence of sand-swimming, probably by a golden mole with a means of locomotion similar to that of the extant Eremitalpa genus. Such traces have not been described in detail in the global ichnology record, and merit the erection of a new ichnogenus Natatorichnus, with two ichnospecies, N. subarenosa ichnosp. nov and N. sulcatus ichnosp. nov. Care is required in the identification of such traces, and the orientation of the trace fossil surface needs to be determined, to avoid confusion with hatchling turtle tracks. Substantial regional Pleistocene dune environments are inferred from these sand-swimming traces.


2021 ◽  
pp. 1-14
Author(s):  
Sebastian Willman ◽  
Ben J. Slater

Abstract Here we present a detailed accounting of organic microfossils from late Ediacaran sediments of Finland, from the island of Hailuoto (northwest Finnish coast), and the Saarijärvi meteorite impact structure (~170 km northeast of Hailuoto, mainland Finland). Fossils were recovered from fine-grained thermally immature mudstones and siltstones and are preserved in exquisite detail. The majority of recovered forms are sourced from filamentous prokaryotic and protistan-grade organisms forming interwoven microbial mats. Flattened Nostoc-ball-like masses of bundled Siphonophycus filaments are abundant, alongside Rugosoopsis and Palaeolyngbya of probable cyanobacterial origin. Acritarchs include Chuaria, Leiosphaeridia, Symplassosphaeridium and Synsphaeridium. Significantly, rare spine-shaped sclerites of bilaterian origin were recovered, providing new evidence for a nascent bilaterian fauna in the terminal Ediacaran. These findings offer a direct body-fossil insight into Ediacaran mat-forming microbial communities, and demonstrate that alongside trace fossils, detection of a bilaterian fauna prior to the Cambrian might also be sought among the emerging record of small carbonaceous fossils (SCFs).


2012 ◽  
Vol 86 (6) ◽  
pp. 931-955 ◽  
Author(s):  
Richard Hofmann ◽  
M. Gabriela Mángano ◽  
Olaf Elicki ◽  
Rafie Shinaq

The Hanneh Member (Cambrian Stage 5) of the Burj Formation and the Umm Ishrin Formation of Jordan represent a transgressive-regressive succession that contains twenty-eight ichnotaxa, including vertical burrows (Arenicolitesisp.,Diplocraterionisp.,Gyrolithes polonicus,Rosseliaisp.,Skolithos linearis, escape trace fossils), horizontal simple burrows and trails (Archaeonassa fossulata,Gordia marina,Helminthoidichnites tenuis,Palaeophycus tubularis,Planolites beverleyensis,P. montanus), plug-shaped burrows (Bergaueria sucta), horizontal branched burrows (Asterosomaisp.,Phycodesisp.,Treptichnuscf.T. pedum), bilobate structures (various ichnospecies ofCruzianaandRusophycus), and trackways and scratch marks (Diplichnitesisp.,Dimorphichnuscf.D. obliquus,Monomorphichnusisp.). Eleven trace-fossil assemblages are identified. TheArenicolitesisp. andDiplocraterionisp. assemblages occur in transgressive tidal dunes and bars whereas theRosseliaisp. assemblage characterizes areas between tidal dunes. TheCruziana salomonisassemblage reflects a wide variety of environmental settings including channels within tidal-bar complexes, bottomsets of tidal dunes, and interdune areas. TheGordia marinaassemblage is present between dune patches. TheGyrolithes polonicusassemblage penetrates into firmground mudstone below the maximum flooding surface. TheBergaueria sucta,Archaeonassa fossulata,Rusophycus aegypticusandCruziana problematicaassemblages occur in different subenvironments of the progradational delta.Cruziana salomonisandRusophycus burjensis, originally considered indicative of an early Cambrian age, are actually middle Cambrian in their type locality. Occurrences ofCruziana jordanicaandRusophycus aegypticusprovide evidence that these ichnospecies are of the same age in Jordan and may co-exist in terms of stratigraphic distribution withC. salomonisandR. burjensis.


Geologos ◽  
2018 ◽  
Vol 24 (2) ◽  
pp. 111-125 ◽  
Author(s):  
Sunny C. Ezeh ◽  
Wilfred A. Mode ◽  
Berti M. Ozumba

Abstract Miocene deposits in the eastern portion of the Greater Ughelli, Central Swamp and Coastal Swamp depobelts contain well-developed brackish-water trace fossil assemblages. Twelve ichnogenera have been identified, namely: Asterosoma, Bergaueria, Chondrites, Gyrolithes, Thalassinoides, Lockeia, Palaeophycus, ?Conichnus, Planolites, Siphonichnus, Skolithos and Diplocraterion. In addition, common non-descript, passively filled burrows and fugichnia (escape structures) have also been observed. The above-mentioned ichnogenera and associated non-descript structures can be arranged into six distinct and recurring ichnoassociations within the Greater Ughelli, Central Swamp and Coastal Swamp depobelts. Each ichnoassociation is comprised of a group of trace fossils which collectively reflect specific environmental conditions during deposition of these Miocene strata. All trace fossil assemblages illustrate deposition in nearshore, restricted settings. Ichnological and sedimentological criteria which may be utilized to recognise brackish-water deposits are discussed and illustrated in pictures of the cores studied.


2016 ◽  
Vol 371 (1685) ◽  
pp. 20150287 ◽  
Author(s):  
Graham E. Budd ◽  
Illiam S. C. Jackson

Simulation studies of the early origins of the modern phyla in the fossil record, and the rapid diversification that led to them, show that these are inevitable outcomes of rapid and long-lasting radiations. Recent advances in Cambrian stratigraphy have revealed a more precise picture of the early bilaterian radiation taking place during the earliest Terreneuvian Series, although several ambiguities remain. The early period is dominated by various tubes and a moderately diverse trace fossil record, with the classical ‘Tommotian’ small shelly biota beginning to appear some millions of years after the base of the Cambrian at ca 541 Ma. The body fossil record of the earliest period contains a few representatives of known groups, but most of the record is of uncertain affinity. Early trace fossils can be assigned to ecdysozoans, but deuterostome and even spiralian trace and body fossils are less clearly represented. One way of explaining the relative lack of clear spiralian fossils until about 536 Ma is to assign the various lowest Cambrian tubes to various stem-group lophotrochozoans, with the implication that the groundplan of the lophotrochozoans included a U-shaped gut and a sessile habit. The implication of this view would be that the vagrant lifestyle of annelids, nemerteans and molluscs would be independently derived from such a sessile ancestor, with potentially important implications for the homology of their sensory and nervous systems.


1999 ◽  
Vol 73 (4) ◽  
pp. 711-720 ◽  
Author(s):  
J. M. De Gibert ◽  
A. A. Ekdale

The shallow-marine Carmel Formation (Middle Jurassic) in central Utah hosts low-diversity trace fossil assemblages, including Arenicolites, Chondrites, Gyrochorte, Lockeia, Planolites, Protovirgularia, Rosselia, Scalarituba, Skolithos, Taenidium, and Teichichnus. Non specialized ichnotaxa with a remarkably small burrow size dominate the assemblages. The amount of bioturbation is lower than expected in comparison with modern shallow-marine carbonate environments. These ichnological features also are significantly different from those of other Jurassic shallow-marine carbonates. The trace fossils represent an environmentally stressed benthic community in a marginal marine, restricted setting, with salinities above normal marine and with depletion of oxygen in pore waters.


2013 ◽  
Vol 64 (5) ◽  
pp. 355-374 ◽  
Author(s):  
Vladimír Šimo ◽  
Adam Tomašových

Abstract Highly-bioturbated “spotted” limestones and marls (Fleckenmergel-Fleckenkalk facies) of the Early Jurassic, which were deposited in broad and recurrent deep-shelf habitats of the Northern Tethys, are characterized by rare benthic carbonate-producing macroinvertebrates. To address this paradox, we analyse trace-fossil assemblages in a ~85 m-thick succession of Pliensbachian spotted deposits (Zliechov Basin, Western Carpathians). They are dominated by infaunal and semi-infaunal deposit-feeders, with 9 ichnogenera and pyritized tubes of the semi-infaunal foraminifer Bathysiphon, being dominated by Chondrites, Lamellaeichnus (new ichnogenus), and Teichichnus. Lamellaeichnus, represented by a horizontal basal cylindrical burrow and an upper row of stacked convex-up gutters, was produced by a mobile deposit-feeder inhabiting shallow tiers because it is crossed by most other trace fossils. We show that the spotty appearance of the deposits is generated by a mixture of (1) dark, organic-rich shallow- and deep-tier traces (TOC = 0.16-0.36), and (2) light grey, organic-poor mottled or structurless sediment (TOC = 0.09-0.22). The higher TOC in shallow-tier burrows of Lamellaeichnus demonstrates that uppermost sediment layers were affected by poor redox cycling. Such conditions imply a limited mixed-layer depth and inefficient nutrient recycling conditioned by hypoxic bottom-waters, allowed by poor circulation and high sedimentation rates in depocenters of the Zliechov Basin. Hypoxic conditions are further supported by (1) dominance of trace-fossils produced by infaunal deposit feeders, (2) high abundance of hypoxiatolerant agglutinated foraminifer Bathysiphon, and (3) high abundance of Chondrites with ~0.5 mm-sized branches. Oxygen-deficient bottom-conditions can thus simultaneously explain the rarity of benthic carbonate-producing macroinvertebrates and high standing abundance of tolerant soft-shell and agglutinated organisms in spotted deposits.


2018 ◽  
Vol 5 ◽  
pp. 209-226
Author(s):  
Takashi Sato ◽  
Marjorie Chan ◽  
Allan Ekdale

Trace fossil assemblages in a fluvial-lacustrine sequence stratigraphic context hold significant poten-tial for expanding our understanding of environmental controls and continental basin-fill history. The succession of the Eocene Uinta Formation and four members of the Duchesne River Formation is ex¬tremely well-exposed in the Uinta Basin of northeastern Utah, revealing a robust stratigraphic framework to document broad-scale fluvial-lacustrine facies architectures and associated trace fossil assemblages. Greenish- and gray-colored mudstone beds with interbedded tabular sandstone representing lacustrine environments contain the trace fossils Arenicolites and Gordia (= Haplotichnus). In contrast, red mudstone beds with interbedded channelized sandstone representing upstream fluvial and alluvial environments contain a variety of insect trace fossils, including Scoyenia, Ancorichnus, and nest structures. Transitional, interfingering lithologies of wetland or shallow, short-lived lacustrine environments on the alluvial plain contain the trace fossil Steinichnus. Although there are many small-scale (bed-scale) physical sedimen¬tary structures and trace fossils from continental subenvironments, this study focuses on the large-scale (member-scale) change in trace fossil assemblages, with results indicating that the ichnofacies corroborate continental sequence stratigraphic interpretations in a fluvial-lacustrine setting.


1988 ◽  
Vol 125 (2) ◽  
pp. 161-174 ◽  
Author(s):  
A. A. El-Khayal ◽  
M. Romano

AbstractThe previously termed Hanadir Shale of Saudi Arabia is described and re-defined as the Hanadir Formation. At the type locality of Al Hanadir the unit is probably entirely of Llanvirn age while further north shelly faunas of possible Llandeilo age occur in the upper part. Trace fossil assemblages with abundant cruzianids (C. furcifera, C. rugosa, C. goldfussi), Pelecypodichnus, Didymaulichnus and Diplichnites indicate an Arenig age for beds in the upper part of the underlying Saq Formation, while the top of this unit yielded hitherto unrecorded pendent and biserial scandent graptolites, a sparse shelly fauna of lingulacean brachiopods, Neseuretus sp. and the trace fossils Cruziana? imbricata and Phycodes.


Sign in / Sign up

Export Citation Format

Share Document