Analysis of the Morphological Changes and Related Sediment Transport Mechanisms of the Baisha Shoal in the Qiongzhou Strait, China

2016 ◽  
Vol 322 ◽  
pp. 1428-1444
Author(s):  
Jun Kong ◽  
Mingjie Pan ◽  
Chengji Shen ◽  
Guofen Hua ◽  
Hongjun Zhao
2021 ◽  
Vol 9 (3) ◽  
pp. 245
Author(s):  
Cuiping Kuang ◽  
Xuejian Han ◽  
Jiabo Zhang ◽  
Qingping Zou ◽  
Boling Dong

Beach nourishment, a common practice to replenish an eroded beach face with filling sand, has become increasingly popular as an environmentally friendly soft engineering measure to tackle coastal erosion. In this study, three 200 m long offshore submerged sandbars were placed about 200 m from the shore in August 2017 for both coastal protection and beach nourishment at Shanhai Pass, Bohai Sea, northeastern China. A series of 21 beach profiles were collected from August 2017 to July 2018 to monitor the morphological changes of the nourished beach. Field observations of wave and tide levels were conducted for one year and tidal current for 25 h, respectively. To investigate the spatial-temporal responses of hydrodynamics, sediment transport, and morphology to the presence of three artificial submerged sandbars, a two-dimensional depth-averaged (2DH) multi-fraction sediment transport and morphological model were coupled with wave and current model and implemented over a spatially varying nested grid. The model results compare well with the field observations of hydrodynamics and morphological changes. The tidal range was around 1.0 m and the waves predominately came from the south-south-east (SSE) direction in the study area. The observed and predicted beach profiles indicate that the sandbars moved onshore and the morphology experienced drastic changes immediately after the introduction of sandbars and reached an equilibrium state in about one year. The morphological change was mainly driven by waves. Under the influences of the prevailing waves and the longshore drift toward the northeast, the coastline on the leeside of the sandbars advanced seaward by 35 m maximally while the rest adjacent coastline retreated severely by 44 m maximally within August 2017–July 2018. The model results demonstrate that the three sandbars have little effect on the tidal current but attenuate the incoming wave significantly. As a result, the medium-coarse sand of sandbars is transported onshore and the background silt is mainly transported offshore and partly in the longshore direction toward the northeast. The 2- and 5-year model simulation results further indicate that shoreline salient may form behind the sandbars and protrude offshore enough to reach the sandbars, similar to the tombolo behind the breakwater.


Ocean Science ◽  
2017 ◽  
Vol 13 (5) ◽  
pp. 673-690 ◽  
Author(s):  
Guilherme Franz ◽  
Matthias T. Delpey ◽  
David Brito ◽  
Lígia Pinto ◽  
Paulo Leitão ◽  
...  

Abstract. Coastal defence structures are often constructed to prevent beach erosion. However, poorly designed structures may cause serious erosion problems in the downdrift direction. Morphological models are useful tools to predict such impacts and assess the efficiency of defence structures for different scenarios. Nevertheless, morphological modelling is still a topic under intense research effort. The processes simulated by a morphological model depend on model complexity. For instance, undertow currents are neglected in coastal area models (2DH), which is a limitation for simulating the evolution of beach profiles for long periods. Model limitations are generally overcome by predefining invariant equilibrium profiles that are allowed to shift offshore or onshore. A more flexible approach is described in this paper, which can be generalised to 3-D models. The present work is based on the coupling of the MOHID modelling system and the SWAN wave model. The impacts of different designs of detached breakwaters and groynes were simulated in a schematic beach configuration following a 2DH approach. The results of bathymetry evolution are in agreement with the patterns found in the literature for several existing structures. The model was also tested in a 3-D test case to simulate the formation of sandbars by undertow currents. The findings of this work confirmed the applicability of the MOHID modelling system to study sediment transport and morphological changes in coastal zones under the combined action of waves and currents. The same modelling methodology was applied to a coastal zone (Costa da Caparica) located at the mouth of a mesotidal estuary (Tagus Estuary, Portugal) to evaluate the hydrodynamics and sediment transport both in calm water conditions and during events of highly energetic waves. The MOHID code is available in the GitHub repository.


2017 ◽  
Vol 17 (5) ◽  
pp. 1325-1334 ◽  
Author(s):  
G. G. Morianou ◽  
N. N. Kourgialas ◽  
G. P. Karatzas ◽  
N. P. Nikolaidis

In the present work, a two-dimensional (2D) hydraulic model was used for the simulation of river flow and sediment transport in the downstream section of the Koiliaris River Basin in Crete, Greece, based on two different structured grids. Specifically, an important goal of the present study was the comparison of a curvilinear grid model with a rectilinear grid model. The MIKE 21C model has been developed to simulate 2D flows and morphological changes in rivers by using either an orthogonal curvilinear grid or a rectilinear grid. The MIKE 21C model comprises two parts: (a) the hydrodynamic part that is based on the Saint-Venant equations and (b) the morphological change part for the simulation of bank erosion and sediment transport. The difference between the curvilinear and the rectilinear grid is that the curvilinear grid lines follow the bank lines of the river, providing a better resolution of the flow near the boundaries. The water depth and sediment results obtained from the simulations for the two different grids were compared with field observations and a series of statistical indicators. It was concluded that the curvilinear grid model results were in better agreement with the field measurements.


Geosciences ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 125 ◽  
Author(s):  
Teuku Rasyif ◽  
Shigeru Kato ◽  
Syamsidik ◽  
Takumi Okabe

The 2004 Indian Ocean tsunami caused massive morphological changes around the coast of Sumatra, Indonesia. This research investigates the coastal morphological changes in the Banda Aceh area via coupling a hydrodynamic model with a sediment transport module. The Cornell Multigrid Coupled Tsunami Model (COMCOT) was coupled with the XBeach Model to simultaneously simulate sediment transport and the hydrodynamic process during the tsunami. The coupled model is known as COMCOT-SED. Field bathymetric data measured in 2006 were used to validate the coupled model. This study reveals that the tsunami’s impact was more severe on the eastern part of the coast, where it hit directly. Meanwhile, the western part of the coast suffered a lower impact because of the sheltering effects from a series of small islands and a headland to the north. This study has shown that the model results from COMCOT-SED are consistent with field data and show where the tsunami waves caused offshore erosion.


2020 ◽  
Vol 430 ◽  
pp. 106364
Author(s):  
Jongwi Chang ◽  
Guan-hong Lee ◽  
Courtney K. Harris ◽  
Yongsik Song ◽  
Steven M. Figueroa ◽  
...  

2019 ◽  
Vol 39 (4) ◽  
pp. 295-312 ◽  
Author(s):  
Kyriaki Manta ◽  
Grigoris Rousakis ◽  
George Anastasakis ◽  
Vasilios Lykousis ◽  
Dimitris Sakellariou ◽  
...  

2019 ◽  
Vol 7 (7) ◽  
pp. 210
Author(s):  
Anita Engelstad ◽  
Gerben Ruessink ◽  
Piet Hoekstra ◽  
Maarten van der Vegt

Inundation of barrier islands can cause severe morphological changes, from the break-up of islands to sediment accretion. The response will depend on island geometry and hydrodynamic forcing. To explore this dependence, the non-hydrostatic wave model SWASH was used to investigate the relative importance of bedload transport processes, such as transport by mean flow, short- (0.05–1 Hz) and infragravity (0.005–0.05 Hz) waves during barrier island inundation for different island configurations and hydrodynamic conditions. The boundary conditions for the model are based on field observations on a Dutch barrier island. Model results indicate that waves dominate the sediment transport processes from outer surfzone until landwards of the island crest, either by transporting sediment directly or by providing sediment stirring for the mean flow transport. Transport by short waves was continuously landwards directed, while infragravity wave and mean flow transport was seaward or landward directed. Landward of the crest, sediment transport was mostly dominated by the mean flow. It was forced by the water level gradient, which determined the mean flow transport direction and magnitude in the inner surfzone and on the island top. Simulations suggest that short wave and mean flow transport are generally larger on steeper slopes, since wave energy dissipation is less and mean flow velocities are higher. The slope of the island top and the width of the island foremost affect the mean flow transport, while variations in inundation depth will additionally affect transport by short-wave acceleration skewness.


Sign in / Sign up

Export Citation Format

Share Document