An Optimal Rain-Gauge Network Using a GIS-Based Approach with Spatial Interpolation Techniques for the Mekong River Basin

2021 ◽  
Vol 114 (sp1) ◽  
Author(s):  
Van Men Huynh ◽  
Sunghoon Hong ◽  
Yongju Kwon ◽  
Van Ty Tran ◽  
Vuong Thu Minh Huynh ◽  
...  
2019 ◽  
Vol 11 (22) ◽  
pp. 2709 ◽  
Author(s):  
Chelsea Dandridge ◽  
Venkat Lakshmi ◽  
John Bolten ◽  
Raghavan Srinivasan

Satellite-based precipitation is an essential tool for regional water resource applications that requires frequent observations of meteorological forcing, particularly in areas that have sparse rain gauge networks. To fully realize the utility of remotely sensed precipitation products in watershed modeling and decision-making, a thorough evaluation of the accuracy of satellite-based rainfall and regional gauge network estimates is needed. In this study, Tropical Rainfall Measuring Mission (TRMM) Multi-Satellite Precipitation Analysis (TMPA) 3B42 v.7 and Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS) daily rainfall estimates were compared with daily rain gauge observations from 2000 to 2014 in the Lower Mekong River Basin (LMRB) in Southeast Asia. Monthly, seasonal, and annual comparisons were performed, which included the calculations of correlation coefficient, coefficient of determination, bias, root mean square error (RMSE), and mean absolute error (MAE). Our validation test showed TMPA to correctly detect precipitation or no-precipitation 64.9% of all days and CHIRPS 66.8% of all days, compared to daily in-situ rainfall measurements. The accuracy of the satellite-based products varied greatly between the wet and dry seasons. Both TMPA and CHIRPS showed higher correlation with in-situ data during the wet season (June–September) as compared to the dry season (November–January). Additionally, both performed better on a monthly than an annual time-scale when compared to in-situ data. The satellite-based products showed wet biases during months that received higher cumulative precipitation. Based on a spatial correlation analysis, the average r-value of CHIRPS was much higher than TMPA across the basin. CHIRPS correlated better than TMPA at lower elevations and for monthly rainfall accumulation less than 500 mm. While both satellite-based products performed well, as compared to rain gauge measurements, the present research shows that CHIRPS might be better at representing precipitation over the LMRB than TMPA.


2021 ◽  
Vol 765 ◽  
pp. 144494
Author(s):  
He Chen ◽  
Junguo Liu ◽  
Ganquan Mao ◽  
Zifeng Wang ◽  
Zhenzhong Zeng ◽  
...  

2021 ◽  
Vol 36 ◽  
pp. 100873
Author(s):  
Yishan Li ◽  
Hui Lu ◽  
Kun Yang ◽  
Wei Wang ◽  
Qiuhong Tang ◽  
...  

2021 ◽  
Vol 13 (2) ◽  
pp. 303
Author(s):  
Shi Hu ◽  
Xingguo Mo

Using the Global Land Surface Satellite (GLASS) leaf area index (LAI), the actual evapotranspiration (ETa) and available water resources in the Mekong River Basin were estimated with the Remote Sensing-Based Vegetation Interface Processes Model (VIP-RS). The relative contributions of climate variables and vegetation greening to ETa were estimated with numerical experiments. The results show that the average ETa in the entire basin increased at a rate of 1.16 mm year−2 from 1980 to 2012 (36.7% of the area met the 95% significance level). Vegetation greening contributed 54.1% of the annual ETa trend, slightly higher than that of climate change. The contributions of air temperature, precipitation and the LAI were positive, whereas contributions of solar radiation and vapor pressure were negative. The effects of water supply and energy availability were equivalent on the variation of ETa throughout most of the basin, except the upper reach and downstream Mekong Delta. In the upper reach, climate warming played a critical role in the ETa variability, while the warming effect was offset by reduced solar radiation in the Mekong Delta (an energy-limited region). For the entire basin, the available water resources showed an increasing trend due to intensified precipitation; however, in downstream areas, additional pressure on available water resources is exerted due to cropland expansion with enhanced agricultural water consumption. The results provide scientific basis for practices of integrated catchment management and water resources allocation.


2021 ◽  
Vol 13 (2) ◽  
pp. 312
Author(s):  
Xiongpeng Tang ◽  
Jianyun Zhang ◽  
Guoqing Wang ◽  
Gebdang Biangbalbe Ruben ◽  
Zhenxin Bao ◽  
...  

The demand for accurate long-term precipitation data is increasing, especially in the Lancang-Mekong River Basin (LMRB), where ground-based data are mostly unavailable and inaccessible in a timely manner. Remote sensing and reanalysis quantitative precipitation products provide unprecedented observations to support water-related research, but these products are inevitably subject to errors. In this study, we propose a novel error correction framework that combines products from various institutions. The NASA Modern-Era Retrospective Analysis for Research and Applications (AgMERRA), the Asian Precipitation Highly-Resolved Observational Data Integration Towards Evaluation of Water Resources (APHRODITE), the Climate Hazards group InfraRed Precipitation with Stations (CHIRPS), the Multi-Source Weighted-Ensemble Precipitation Version 1.0 (MSWEP), and the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Climate Data Records (PERSIANN) were used. Ground-based precipitation data from 1998 to 2007 were used to select precipitation products for correction, and the remaining 1979–1997 and 2008–2014 observe data were used for validation. The resulting precipitation products MSWEP-QM derived from quantile mapping (QM) and MSWEP-LS derived from linear scaling (LS) are evaluated by statistical indicators and hydrological simulation across the LMRB. Results show that the MSWEP-QM and MSWEP-LS can better capture major annual precipitation centers, have excellent simulation results, and reduce the mean BIAS and mean absolute BIAS at most gauges across the LMRB. The two corrected products presented in this study constitute improved climatological precipitation data sources, both time and space, outperforming the five raw gridded precipitation products. Among the two corrected products, in terms of mean BIAS, MSWEP-LS was slightly better than MSWEP-QM at grid-scale, point scale, and regional scale, and it also had better simulation results at all stations except Strung Treng. During the validation period, the average absolute value BIAS of MSWEP-LS and MSWEP-QM decreased by 3.51% and 3.4%, respectively. Therefore, we recommend that MSWEP-LS be used for water-related scientific research in the LMRB.


Sign in / Sign up

Export Citation Format

Share Document