Modeling and Parameter Revising Method of Rigid-Flexible Coupling Dynamics Model

2015 ◽  
Vol 73 ◽  
pp. 720-724 ◽  
Author(s):  
Haiwei Wang ◽  
Geng Liu ◽  
Liyan Wu ◽  
Tao Zhang
2013 ◽  
Vol 572 ◽  
pp. 471-475
Author(s):  
Shen Long Li ◽  
Jiang Li Pan ◽  
Xin Yuan Zhao

Multi-plate friction pairs are important components in the gearbox of tracked vehicle. When the multi-friction pairs are in separation state, the uniform separation gaps of friction pairs are key factors affecting their operating performance. Most current research focuses on investigation of the failure modes of friction plate, such as, wear. However, the literatures on the vibration excitations from the inner and outer hub which affect the uniform separation gaps of the friction pairs are rare. This paper developed a rigid-flexible coupling dynamic model with different gear backlashes. The vibration characteristics of manipulate components and the separation gap of the friction pairs are studied. The results show that the model can be utilized to investigate the effects of the gear backlashes for manipulation components on the separation gaps of multi-friction pairs and it can be used to study the failure modes of friction plate in brakes. The developed model is expected to be the foundation for further optimization of the gear backlash. Keywords: Multi Friction Pairs; Separation gap; Gear Backlash; Rigid-flexible Coupling Dynamics Model


2014 ◽  
Vol 1016 ◽  
pp. 228-233
Author(s):  
Teng An Zou ◽  
Cun Yun Pan ◽  
Xiang Zhang ◽  
Lei Zhang

Twin-rotor piston engine (TRPE) is a new differential rotary engine, which is still under developing. In this paper, a rigid-flexible coupling dynamics model was established for the prototype TRPE-350. By combining the multi-body dynamics simulating software RecurDyn and the finite analysis software ANSYS, the TRPE′s performances were studied. Vibration analysis for rigid-flexible coupling model was analyzed. The simulation results can be found that the simulated overall changing trends match with the actual movement of the TRPE very well. So it provides a theoretical tool for further optimization and improvement of this engine.


2011 ◽  
Vol 308-310 ◽  
pp. 1802-1805
Author(s):  
Ze Hao Huang ◽  
Xu Sheng Lu ◽  
Wen Qiang Xu ◽  
Zhang Dong Sun

In this paper, the ride comfort of the ATV( with two wheels in the front and one wheel in the rear) is the research object. The software of hypermesh and asams establish rigid-flexible coupling dynamics model and simulate the ride comfort. After the comparative analysis between the vehicle ride comfort and four-wheel all -terrain motorbike, its ride comfort has been optimized.


2011 ◽  
Vol 199-200 ◽  
pp. 243-250 ◽  
Author(s):  
Yue Chen Duan ◽  
Ding Guo Zhang

The rigid-flexible coupling dynamics of a radially rotating flexible beam with impact is investigated in this paper. The transversal deformation and nonlinear coupled deformation, which means the longitudinal shortening caused by transversal deformation, is considered here. The impact force is calculated based on Hertz contact theory and nonlinear damping theory. By introducing the concept of impact potential energy, the system’s rigid-flexible coupling dynamic equations with impact is obtained by using Lagrange equation. The dynamic simulation is given to validate the method presented here, and get some dynamic response, such as impact force and flexible deformation.


2017 ◽  
Vol 19 (8) ◽  
pp. 5668-5678
Author(s):  
Chiyu Hao ◽  
Guangbin Feng ◽  
Huagang Sun ◽  
Haiping Li

2020 ◽  
pp. 1-15
Author(s):  
Xin Li ◽  
Ce Guo ◽  
Yaopeng Ma ◽  
Yu Zheng

Abstract The bamboo weevil, Cyrtotrachelus buqueti, has excellent flight ability and strong environmental adaptability. When it flies, its fore wings and hind wings are unfolded, whereas when it crawls, its fore wings are closed, and its flexible hind wings are regularly folded under the fore wings. In this paper, the hind wing folding/unfolding pattern of C. buqueti is analyzed and a new bionic foldable wing with rigid–flexible coupling consisting of a link mechanism and a wing membrane is constructed. The movement of the link at the wing base mimics the contraction of a muscle in the thorax that triggers scissor-like motion and the deployment of the veins. Elastic hinges are used to mimic the rotational motion of the wing base and the vein joints. The static/dynamic characteristics of bionic foldable wings are further analyzed, and the LS-DYNA software is used to investigate rigid–flexible coupling dynamics. The elastic deformation of the wing membrane, kinematic characteristics of the linkage mechanism, and modes of the whole system are calculated. Static analysis of the structure reveals that the foldable wing has excellent stiffness characteristics and load-bearing capacity. The bionic foldable wing is constructed using 3D printing technology, and its folding and unfolding performance is tested. Evaluation of its performance shows that the bionic wing has a large fold ratio and can achieve stable folding and unfolding motions. A slightly tighter assembly between the pin and the hinge hole ensures that the wing does not fold back during flapping.


Sign in / Sign up

Export Citation Format

Share Document