Numerical Study on the Effects of Submerged Breakwater on Wave Overtopping

2017 ◽  
Vol 79 ◽  
pp. 264-268 ◽  
Author(s):  
Zhenlu Wang ◽  
Zegao Yin ◽  
Yujie Chen ◽  
Bo Yang
Author(s):  
Athul Sasikumar ◽  
Arun Kamath ◽  
Onno Musch ◽  
Arne Erling Lothe ◽  
Hans Bihs

In coastal areas, climate change is causing mean sea level rise and more frequent storm surge events. This means the breakwaters are expected to withstand the action of more severe incident waves and larger overtopping rates than they were designed for. Therefore, these impacts may have a negative effect on the functionality such as overtopping above the acceptable limits, in addition to stability of these structures. A breakwater which has been partly damaged by a storm stronger than the design storm has weak spots that can easily be damaged further. One way of protecting these breakwaters subjected to climate change is to build a submerged breakwater on the seaward side. This study focuses on the use of numerical model for optimal dimension of a submerged breakwater to be used as a protective measure for an existing structure. Comparisons are made between transmission coefficient predicted in the numerical model and those calculated from different formulae in literature. The variation in transmission coefficient due to different relative submergence and relative width parameters for waves with different steepness is studied and curves showing the dependence of these parameters on wave transmission are made. These results are then used for a test case in Kiberg, Norway where a submerged breakwater is proposed in front of a existing damaged rubble mound breakwater. The optimal geometry generated on the basis of curves is then implemented in the local-scale finite element wave prediction model, CGWAVE.


Author(s):  
Soroush Abolfathi ◽  
Dong Shudi ◽  
Sina Borzooei ◽  
Abbas Yeganeh-Bakhtiari ◽  
Jonathan Pearson

This study develops an accurate numerical tool for investigating optimal retrofit configurations in order to minimize wave overtopping from a vertical seawall due to extreme climatic events and under changing climate. A weakly compressible smoothed particle hydrodynamics (WCSPH) model is developed to simulate the wave-structure interactions for coastal retrofit structures in front of a vertical seawall. A range of possible physical configurations of coastal retrofits including re-curve wall and submerged breakwater are modelled with the numerical model to understand their performance under different wave and structural conditions. The numerical model is successfully validated against laboratory data collected in 2D wave flume at Warwick Water Laboratory. The findings of numerical modelling are in good agreement with the laboratory data. The results indicate that recurve wall is more effective in mitigating wave overtopping and provides more resilience to coastal flooding in comparison to base-case (plain vertical wall) and submerged breakwater retrofit.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Taemin Ha ◽  
Jeseon Yoo ◽  
Sejong Han ◽  
Yong-Sik Cho

Most coastal structures have been built in surf zones to protect coastal areas. In general, the transformation of waves in the surf zone is quite complicated and numerous hazards to coastal communities may be associated with such phenomena. Therefore, the behavior of waves in the surf zone should be carefully analyzed and predicted. Furthermore, an accurate analysis of deformed waves around coastal structures is directly related to the construction of economically sound and safe coastal structures because wave height plays an important role in determining the weight and shape of a levee body or armoring material. In this study, a numerical model using a large eddy simulation is employed to predict the runup heights of nonlinear waves that passed a submerged structure in the surf zone. Reduced runup heights are also predicted, and their characteristics in terms of wave reflection, transmission, and dissipation coefficients are investigated.


2012 ◽  
Vol 1 (33) ◽  
pp. 50 ◽  
Author(s):  
Tomohiro Suzuki ◽  
Toon Verwaest ◽  
William Veale ◽  
Koen Trouw ◽  
Marcel Zijlema

In this paper, the effect of beach nourishment on wave overtopping in shallow foreshores is investigated with the non-hydrostatic wave-flow model SWASH. Firstly, the applicability of SWASH to model wave overtopping is tested by comparing results with a physical model setup with different storm wall heights on top of an impermeable sea dike. The numerical results show good agreement with the physical model. After validation, sensitivity analysis of the effect of beach nourishment on wave overtopping is conducted by changing bottom configurations with the SWASH model. From the sensitivity analysis, it becomes clear that wave overtopping discharge in shallow foreshores is characterized by the bores generated in surf zone due to wave breaking. To reduce wave overtopping discharge in shallow foreshore, it is important to reduce the horizontal momentum of the bores.


2018 ◽  
Vol 1 (36) ◽  
pp. 109 ◽  
Author(s):  
Soroush Abolfathi ◽  
Dong Shudi ◽  
Sina Borzooei ◽  
Abbas Yeganeh-Bakhtiari ◽  
Jonathan Pearson

This study develops an accurate numerical tool for investigating optimal retrofit configurations in order to minimize wave overtopping from a vertical seawall due to extreme climatic events and under changing climate. A weakly compressible smoothed particle hydrodynamics (WCSPH) model is developed to simulate the wave-structure interactions for coastal retrofit structures in front of a vertical seawall. A range of possible physical configurations of coastal retrofits including re-curve wall and submerged breakwater are modelled with the numerical model to understand their performance under different wave and structural conditions. The numerical model is successfully validated against laboratory data collected in 2D wave flume at Warwick Water Laboratory. The findings of numerical modelling are in good agreement with the laboratory data. The results indicate that recurve wall is more effective in mitigating wave overtopping and provides more resilience to coastal flooding in comparison to base-case (plain vertical wall) and submerged breakwater retrofit.


Sign in / Sign up

Export Citation Format

Share Document