scholarly journals Synthesis, Characterization and Study of Antibacterial Activity of a New Schiff Base Ligand and Its Complexes with Co(II), Ni(II), Cu(II), Cd(II) and Hg(II) Metal Ions

2016 ◽  
Vol 13 (2) ◽  
pp. 153-162
Author(s):  
Baghdad Science Journal

Some coordination complexes of Co(??), Ni(??), Cu(??), Cd(??) and Hg(??) are reacted in ethanol with Schiff base ligand derived from of 2,4,6- trihydroxybenzophenone and 3-aminophenol using microwave irradiation and then reacted with metal salts in ethanol as a solvent in 1:2 ratio (metal: ligand). The ligand [H4L] is characterized by FTIR, UV-Vis, C.H.N, 1H-NMR,13C-NMR, and mass spectra. The metal complexes are characterized by atomic absorption, infrared spectra, electronic spectra, molar conductance, (C.H.N for Ni(??) complex) and magnetic moment measurements. These measurements indicate that the ligand coordinates with metal (??) ion in a tridentate manner through the nitrogen and oxygen atoms of the ligand, octahedral structures are suggested for these complexes. Antibacterial activity of the ligand [H4L] and its complexes are studied against (gram positive) and (gram negative) bacteria [Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Bacillus]. The proposed structure of the complexes using the program, Chem office (2006) and the general formula has been given for the prepared ligand complexes K2[M(H2L)2].

2020 ◽  
Vol 2020 ◽  
pp. 1-8 ◽  
Author(s):  
F. K. Ommenya ◽  
E. A. Nyawade ◽  
D. M. Andala ◽  
J. Kinyua

A new series of Mn (II), Co (II), Ni (II), Cu (II), and Zn (II) complexes of the Schiff base ligand, 4-chloro-2-{(E)-[(4-fluorophenyl)imino]methyl}phenol (C13H9ClFNO), was synthesized in a methanolic medium. The Schiff base was derived from the condensation reaction of 5-chlorosalicylaldehyde and 4-fluoroaniline at room temperature. Elemental analysis, FT-IR, UV-Vis, and NMR spectral data, molar conductance measurements, and melting points were used to characterize the Schiff base and the metal complexes. From the elemental analysis data, the metal complexes formed had the general formulae [M(L)2(H2O)2], where L = Schiff base ligand (C13H9ClFNO) and M = Mn, Co, Ni, Cu, and Zn. On the basis of FT-IR, electronic spectra, and NMR data, “O” and “N” donor atoms of the Schiff base ligand participated in coordination with the metal (II) ions, and thus, a six coordinated octahedral geometry for all these complexes was proposed. Molar conductance studies on the complexes indicated they were nonelectrolytic in nature. The Schiff base ligand and its metal (II) complexes were tested in vitro to evaluate their bactericidal activity against Gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa) and Gram-positive bacteria (Bacillus subtilis and Staphylococcus typhi) using the disc diffusion method. The antibacterial evaluation results revealed that the metal (II) complexes exhibited higher antibacterial activity than the free Schiff base ligand.


2014 ◽  
Vol 2014 ◽  
pp. 1-17 ◽  
Author(s):  
Aurora Reiss ◽  
Mariana Carmen Chifiriuc ◽  
Emilia Amzoiu ◽  
Cezar Ionuţ Spînu

New [ML2(H2O)2] complexes, where M = Co(II), Ni(II), Cu(II), and Zn(II) while L corresponds to the Schiff base ligand, were synthesized by condensation of cefotaxime with salicylaldehydein situin the presence of divalent metal salts in ethanolic medium. The complexes were characterized by elemental analyses, conductance, and magnetic measurements, as well as by IR and UV-Vis spectroscopy. The low values of the molar conductance indicate nonelectrolyte type of complexes. Based on spectral data and magnetic moments, an octahedral geometry may be proposed for Co(II), Ni(II), and Zn(II) complexes while a tetragonal geometry for Cu(II) complex. Molecular structure of the Schiff base ligand and its complexes were studied using programs dedicated to chemical modeling and quantomolecular calculation of chemical properties. All the synthesized complexes were tested forin vitroantibacterial activity against some pathogenic bacterial strains, namelyEscherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Bacillus subtilis,andStaphylococcus aureus. The MIC values shown by the complexes against these bacterial strains revealed that the metal complexes possess superior antibacterial activity than the Schiff base.


2010 ◽  
Vol 7 (s1) ◽  
pp. S566-S572 ◽  
Author(s):  
Kavita Rathore ◽  
Rajiv K. R. Singh ◽  
H. B. Singh

The monofunctional bidentate Schiff base ligand (o-vanillin)p-chloroaniline and its four new complexes of chromium(III), cobalt(II), nickel(II) and copper(II) have been synthesized by classical thermal and microwave-irradiated techniques. All the new derivatives have been characterized by elemental analysis, molecular weight determinations, molar conductance measurements, UV-Vis, IR and NMR spectral studies. The IR spectral data suggest the involvement of phenolic oxygen after deprotonation and azomethine nitrogen in coordination to the central metal ion. The growth inhibiting potential of the ligands and complexes has been assessed against a variety of fungal and bacterial strains.


Author(s):  
Md. Mahasin Ali ◽  
Md. Nur Amin Bitu ◽  
Md. Saddam Hossain ◽  
Md. Faruk Hossen ◽  
Md. Ali Asraf ◽  
...  

A new Schiff base Co(II) complex and - peroxo complex were synthesized and characterized by thin layer chromatography (TLC), elemental analyses, magnetic moment, conductivity measurements, UV-Vis., IR and ESI-MS spectral studies. The cobalt ion was participated in direct complexation with the Schiff base (SB) ligand derived from o-aminobenzoic acid and cinnamaldehyde during the single pot reaction. IR spectral data showed that the Schiff base ligand coordinated to the metal ion through nitrogen of azomethine group and oxygen of carboxyl group (COO-). The molar conductance values indicated that both the complexes are non-electrolytic in nature. Antibacterial activity of the complexes was tested against four pathogenic bacteria namely Staphylococcus aureus, Bacillus cereus, Escherichia coli & Shigella dysenteriae with standard Kanamycin-30. The results showed that both type of complexes have moderate to strong antibacterial activity and the peroxo complex is relatively more potential towards all the tested organisms.


Author(s):  
Md. Mahasin Ali ◽  
Md. Nur Amin Bitu ◽  
Md. Saddam Hossain ◽  
Md. Faruk Hossen ◽  
Md. Ali Asraf ◽  
...  

Two new peroxo-complexes of Cd(II) and Zr(IV) ion containing Schiff base (SB) were synthesized and characterized by Thin Layer Chromatography (TLC), Elemental analyses, conductivity, magnetic moment measurements, UV-Vis. and FT-IR spectral studies. The Schiff base ligand derived from cinnamaldehyde and o-aminophenol participated in complexation through a single pot reaction. FT-IR spectra showed that the Schiff base ligand coordinated to the metal ion through nitrogen of azomethine group and oxygen of hydroxyl group & peroxo group (O-O). The molar conductance values indicated the non-electrolytic nature of both the complexes. Antibacterial activity of the complexes was tested against four pathogenic bacteria, two Gram-positive Staphylococcus aureus & Bacillus cereus and two Gram-negative Escherichia coli & Shigella dysenteriae with standard Kanamycin-30. The result showed that Cd(II) complex exhibited more potential antibacterial activity than the Zr(IV) complex against all the tested pathogens.


2017 ◽  
Vol 13 (1) ◽  
pp. 5948-5958
Author(s):  
Abraham Lincoln ◽  
Srinath Boinapalli ◽  
A. Anil Kumar

A series of Ni(II) complexes (NiL1-NiL5) have been synthesized from macrocyclic Schiff base ligands (L1-L5) were obtained from condensation of  4-aminoantipyrine derivative (L) with different diamines and hydrazides. All these compounds were well characterized by elemental, spectral analysis(mass, IR, 1H-NMR, electronic), magnetic suseceptibility, molar conductance and thermal studies. Macrocyclic Schiff bases are tetradentate with N4 donor system around the metal ion.Octahedral geometry have been assigned for all complexes. All ligands and complexes were examined for antibacterial activity and found that complexes were more potent when compared to ligands.  


2018 ◽  
Vol 31 (2) ◽  
pp. 115
Author(s):  
Kaleda Kalaf gabar

      The complexes of Schiff base (6-[Hydroxy - benzylidene)-amino]-pyrimidine-2,4-diol ) (L) with Mn(II), Fe(II), Co(II) and Ni(II) were prepared. The Schiff base and complexes have been characterized by FT-IR, 1H-NMR, UV-Vis, LC-mass spectra, magnetic moment, elemental microanalyses (C.H.N.), chloride containing, atomic absorption and molar conductance. The Schiff base, metal salts and complexes were also screened for their bioactivity such as antibacterial and antifungal.


2021 ◽  
Vol 25 (9) ◽  
pp. 1599-1603
Author(s):  
I. ADO ◽  
J. NA’ALIYA ◽  
S. SANI ◽  
M.M. HALEELU

The Schiff base was synthesized by condensation of 2-hydroxy-1-naphthaldehyde with 3- aminobenzoic acid in 1:1 molar ratio. The Schiff base ligand formed complexes with Co (II), Ni (II), Cu (II) and Zn (II) acetate via mechanochemical synthesis. The synthesized compounds were characterized by solubility test, thermal analysis, FT-IR, powder x-ray diffraction, molar conductance measurement, magnetic susceptibility and elemental analysis. The Schiff base has a melting point of 190 oC. The decomposition temperature of complexes was found to be in the range 289 – 302 oC. The Schiff base and its metal (II) complexes were soluble in DMF, DMSO and sparingly soluble in acetonitrile, chloroform, diethyl ether and insoluble in n-hexane which indicate the polar nature of the synthesized compounds. The IR spectral analysis of the free Schiff base shows a band at 1622 cm-1, assigned to v(C=N) stretching vibrations. This band was shifted in the spectra of complexes (1607 – 1633 cm-1), indicating coordination of the Schiff base to the metal ion through the azomethine group. The molar conductance of complexes determined are in the range 9.51 – 14.87 Ohm-1cm2mol-1 which indicate the non-electrolytic nature in DMF. Magnetic susceptibility measurements of Co (II), Ni (II) and Cu (II) complexes exhibit a magnetic moment in the range 1.25 – 3.08 BM. The values correspond to square-planar geometry. The magnetic moment value of Zn (II) complex indicates a diamagnetic behaviour. The elemental analysis of the complexes for C, H and N determined showed that the observed and the calculated percentages of the elements are in good agreement.


Author(s):  
B. Akila ◽  
A. Xavier

Schiff base synthesized from 2-hydroxy-1-naphthaldehyde and 2-2’ (ethylene dioxy) bis ethylenediamine (L1) and its Metal complexes, [M (II) (L)6](where M= Mn(II), Ru(III), Cu(II)and V(V) L= Schiff base moiety), have been prepared and characterized by elemental analysis, spectroscopic measurements (infrared, electronic spectroscopy, 1H-NMR, EPR and Mass spectroscopy ). Elemental analysis of the metal complexes was suggested that the stoichiometry ratio is 1:1 (metal-ligand). The electronic spectra suggest an octahedral geometry for MC1and MC2 Schiff base complexes and distorted octahedral for MC3 and MC4 complexes. The Schiff base and its metal chelates have been screened for their invitro test antibacterial activity against three bacteria, gram-positive (Staphylococcus aureus) and gram-negative (Klebsiella pheneuammonia and Salmonella typhi). Two strains of fungus (Aspergillus niger and Candida albicans). The metal chelates were shown to possess more anti fungal activity compare then antibacterial activity and antioxidant properties. The complexes are highly active than the free Schiff-base ligand.    


Sign in / Sign up

Export Citation Format

Share Document