scholarly journals Synthesis, Characterization and Antibacterial Activity of Binuclear Chromium(II) Complexes of New Schiff Base Ligand Derived from Amino Acids

2018 ◽  
Vol 31 (1) ◽  
pp. 99-104 ◽  
Author(s):  
Voguri Haranath Babu ◽  
Anna Venkateswara Rao ◽  
Ashok More
Author(s):  
B. Akila ◽  
A. Xavier

Schiff base synthesized from 2-hydroxy-1-naphthaldehyde and 2-2’ (ethylene dioxy) bis ethylenediamine (L1) and its Metal complexes, [M (II) (L)6](where M= Mn(II), Ru(III), Cu(II)and V(V) L= Schiff base moiety), have been prepared and characterized by elemental analysis, spectroscopic measurements (infrared, electronic spectroscopy, 1H-NMR, EPR and Mass spectroscopy ). Elemental analysis of the metal complexes was suggested that the stoichiometry ratio is 1:1 (metal-ligand). The electronic spectra suggest an octahedral geometry for MC1and MC2 Schiff base complexes and distorted octahedral for MC3 and MC4 complexes. The Schiff base and its metal chelates have been screened for their invitro test antibacterial activity against three bacteria, gram-positive (Staphylococcus aureus) and gram-negative (Klebsiella pheneuammonia and Salmonella typhi). Two strains of fungus (Aspergillus niger and Candida albicans). The metal chelates were shown to possess more anti fungal activity compare then antibacterial activity and antioxidant properties. The complexes are highly active than the free Schiff-base ligand.    


2013 ◽  
Vol 3 (5) ◽  
pp. 367-370 ◽  
Author(s):  
Waleed Mahmoud Al Momani ◽  
Ziyad Ahmed Taha ◽  
Abdulaziz Mahmoud Ajlouni ◽  
Qasem Mohammad Abu Shaqra ◽  
Muaz Al Zouby

2020 ◽  
Vol 2020 ◽  
pp. 1-8 ◽  
Author(s):  
F. K. Ommenya ◽  
E. A. Nyawade ◽  
D. M. Andala ◽  
J. Kinyua

A new series of Mn (II), Co (II), Ni (II), Cu (II), and Zn (II) complexes of the Schiff base ligand, 4-chloro-2-{(E)-[(4-fluorophenyl)imino]methyl}phenol (C13H9ClFNO), was synthesized in a methanolic medium. The Schiff base was derived from the condensation reaction of 5-chlorosalicylaldehyde and 4-fluoroaniline at room temperature. Elemental analysis, FT-IR, UV-Vis, and NMR spectral data, molar conductance measurements, and melting points were used to characterize the Schiff base and the metal complexes. From the elemental analysis data, the metal complexes formed had the general formulae [M(L)2(H2O)2], where L = Schiff base ligand (C13H9ClFNO) and M = Mn, Co, Ni, Cu, and Zn. On the basis of FT-IR, electronic spectra, and NMR data, “O” and “N” donor atoms of the Schiff base ligand participated in coordination with the metal (II) ions, and thus, a six coordinated octahedral geometry for all these complexes was proposed. Molar conductance studies on the complexes indicated they were nonelectrolytic in nature. The Schiff base ligand and its metal (II) complexes were tested in vitro to evaluate their bactericidal activity against Gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa) and Gram-positive bacteria (Bacillus subtilis and Staphylococcus typhi) using the disc diffusion method. The antibacterial evaluation results revealed that the metal (II) complexes exhibited higher antibacterial activity than the free Schiff base ligand.


Author(s):  
Ishaq Yahaya Lawan ◽  
Mohammed Muftahu Beli ◽  
Mohammed Adamu ◽  
Fatima Baba Isah ◽  
Maryam Abubakar

Schiff base ligand derived from glycine and benzaldehyde was synthesized together with its metal complexes (zinc and cobalt). The solubility, IR analysis and conductivity measurement were carried out. Antibacterial activities were evaluated using well-diffusion method. The bacterial assay was carried out on two pyogenic bacteria E. coli and Staphylococci and the results showed that the complexes have high antibacterial activity.


2014 ◽  
Vol 2014 ◽  
pp. 1-17 ◽  
Author(s):  
Aurora Reiss ◽  
Mariana Carmen Chifiriuc ◽  
Emilia Amzoiu ◽  
Cezar Ionuţ Spînu

New [ML2(H2O)2] complexes, where M = Co(II), Ni(II), Cu(II), and Zn(II) while L corresponds to the Schiff base ligand, were synthesized by condensation of cefotaxime with salicylaldehydein situin the presence of divalent metal salts in ethanolic medium. The complexes were characterized by elemental analyses, conductance, and magnetic measurements, as well as by IR and UV-Vis spectroscopy. The low values of the molar conductance indicate nonelectrolyte type of complexes. Based on spectral data and magnetic moments, an octahedral geometry may be proposed for Co(II), Ni(II), and Zn(II) complexes while a tetragonal geometry for Cu(II) complex. Molecular structure of the Schiff base ligand and its complexes were studied using programs dedicated to chemical modeling and quantomolecular calculation of chemical properties. All the synthesized complexes were tested forin vitroantibacterial activity against some pathogenic bacterial strains, namelyEscherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Bacillus subtilis,andStaphylococcus aureus. The MIC values shown by the complexes against these bacterial strains revealed that the metal complexes possess superior antibacterial activity than the Schiff base.


2001 ◽  
Vol 56 (4-5) ◽  
pp. 403-410 ◽  
Author(s):  
Daniela Koch ◽  
Winfried Hoffmüller ◽  
Kurt Polborn ◽  
Wolfgang Beck

Abstract β-Phenylalanine forms with chloro bridged complexes the chiral N, O-chelates Cp*Ir(Cl)(NH2CH(Ph)CH2CO2) and (p-cymene)Ru(Cl)(NH2CHPhCH2CO2) as mixture of two diastereoisomers. Similarly the palladium(III) and platinum(II) complexes (Et3P)(Cl)M(NH2CH(Ph)CH2CO2) (M = Pd, Pt) were obtained. Schiff base complexes (arene)(Cl)M(O2CC(R)=N-CH(R)CH(R)CH2CO2CH3) (arene = Cp*, p-cymene; M = Ir, Ru) were synthesized from the chloro-bridged compounds, 2-oxocarboxylates and β-alanine or β-phenylalanine methylester. The Cp*Ir complex with a tridendate dianionic Schiff base generated from pyruvate and β-phenylalaninate is obtained as a single isomer. Cp*Ir(Cl) forms a complex with an N, O-bidentate Schiff base ligand from glycinate and acetylacetic ethyl ester.


Sign in / Sign up

Export Citation Format

Share Document