scholarly journals Mobile-based Telemedicine Application using SVD and F-XoR Watermarking for Medical Images

2020 ◽  
Vol 17 (1) ◽  
pp. 0178
Author(s):  
Hanaa Mohsin Ahmed

A medical- service platform is a mobile application through which patients are provided with doctor’s diagnoses based on information gleaned from medical images. The content of these diagnostic results must not be illegitimately altered during transmission and must be returned to the correct patient. In this paper, we present a solution to these problems using blind, reversible, and fragile watermarking based on authentication of the host image. In our proposed algorithm, the binary version of the Bose_Chaudhuri_Hocquengham (BCH) code for patient medical report (PMR) and binary patient medical image (PMI) after fuzzy exclusive or (F-XoR) are used to produce the patient's unique mark using secret sharing schema (SSS). The patient’s unique mark is used later as a watermark to be embedded into host PMI using blind watermarking-based singular value decomposition (SVD) algorithm. This is a new solution that we also proposed to applying SVD into a blind watermarking image. Our algorithm preserves PMI content authentication during the transmission and PMR ownership to the patient for subsequently transmitting associated diagnosis to the correct patient via a mobile telemedicine application. The performance of experimental results is high compare to previous results, uses recovered watermarks demonstrating promising results in the tamper detection metrics and self-recovery capability, with 30db PSNR, NC value is 0.99.

Author(s):  
Sheshang Degadwala ◽  
Sanjay Chaudhary ◽  
Sanjay Gaur

The fast improvement of the advanced media innovation and the web permit individuals will copy, transmit, appropriate Furthermore store data more undoubtedly. Restorative pictures traded in open networks oblige a technique with give acceptable secrecy for the image, genuineness of the picture proprietorship Also hotspot from claiming origin, Also picture integument confirmation. This Look into keeps tabs for blind watermarking from claiming Medical images, both ash scale and in addition color, preserving its ROI. It also successfully manages tolerant wellbeing record Eventually Tom's perusing safely embedding it inside those picture in front of transmission. The paper is introduce new Embedding Process with Discrete Wavelet Transform and Singular Value Decomposition then relate with others methods performance with different Rotational attacks to demonstrate with parameters. Also Attack detection and recovery of ROI using pseudo Zernike moment and affine transform made this very functional method in the approaching color picture watermarking areas.


2015 ◽  
Vol 15 (3) ◽  
pp. 544
Author(s):  
A. Umamageswari ◽  
G.R. Suresh

<p>Protection of Medical image contents becomes the important issue in computer network security. Digital Watermarking has becomes a promising technique for medical content authentication, it allows to embed relevant information with the image, which provides confidentiality, integrity and authentication by embedding Digital Signature (DS) with the Medical image. In this paper we focus on need for reversible watermarking, Medical Image Compression and security related problems in medical images, it comparing the performances of various lossless watermarking techniques for various medical image modalities like MRI (Magnetic Resonance Imaging), US (Ultrasonic), CT (Computed Tomography), Endoscopic and Angiographic images. Region of Interest (ROI) supporting lossless watermarking systems only considered for discussions. Performance of all lossless watermarking with Digital Signature is analyzed by means of four parameters Capacity Rate, PSNR (Peak Signal to Noise ratio), NPCR (Number of Pixel Change Rate) and Compression Ratio (CR). This Paper also introduces new mechanism for open network security for medical images. This lossless watermarking is responsible for recovering the altered medical image content of the system.</p>


he proposed paper work is implemented using Stationary Wavelet Transformation (SWT) with Singular Value Decomposition (SVD).Even though, there are many other transformations, the Stationary Wavelet Transformation method is chosen for its shift invariance property. The designed method has three steps; the first step is the decomposing of the Medical image into sub-bands using SWT to find the value of sub band and as a second step is to apply SVD, third step will combine both the images with scaling factor. The experiments were conducted over gray scale of MRI and CT Medical images. The statistics of proposed method indicates that imperceptibility of Watermarked Medical images have a Peak Signal to Noise Ratio (PSNR) value of 50 DB for medical images. The robustness is ensured by having Correlation Coefficient (CC) of 1 for the retrieved watermark images. Security for the watermark is extended by encrypting the watermark with chaotic sequence.


Author(s):  
Surekah Borra ◽  
Rohit Thanki

In this article, a blind and robust medical image watermarking technique based on Finite Ridgelet Transform (FRT) and Singular Value Decomposition (SVD) is proposed. A host medical image is first transformed into 16 × 16 non-overlapping blocks and then ridgelet transform is applied on the individual blocks to obtain sets of ridgelet coefficients. SVD is then applied on these sets, to obtain the corresponding U, S and V matrix. The watermark information is embedded into the host medical image by modification of the value of the significant elements of U matrix. This proposed technique is tested on various types of medical images such as X-ray and CT scan. The simulation results revealed that this technique provides better imperceptibility, with an average PSNR being 42.95 dB for all test medical images. This technique also overcomes the limitation of the existing technique which is applicable on only the Region of Interest (ROI) of the medical image.


Author(s):  
Khaldi Amine ◽  
Kahlessenane Fares ◽  
Kafi Med Redouane ◽  
Euschi Salah

In this work, we proposed a robust and blind watermarking approach to adequately secure medical images exchanged in telemedicine. This approach ensures the traceability and integrity of the medical and essential image for data security in the field of telemedicine. In this paper, a blind watermarking method is proposed to adequately secure the electronic patient records. The integration of the watermark will be carefully performed by combining the parity of the successive values. This innovative approach will be typically implemented in the three insertion domains: spatial, frequency and multi-resolution. For the spatial domain, the watermark will be integrated into the colorimetric values of the image. In the frequency domain, the watermark bits will be substituted to the DCT coefficient’s least significant bit. For the multi-resolution domain insertion, after calculating a DWT, the obtained LL sub-band coefficients will be used for the integration process. After comparing our approaches to the various recent works in the three domains, the obtained results demonstrate that our proposed approach offers a good imperceptibility for the frequency and spatial domains insertion.


2020 ◽  
Vol 2020 ◽  
pp. 1-13 ◽  
Author(s):  
Shaozhang Xiao ◽  
Zhengwei Zhang ◽  
Yue Zhang ◽  
Changhui Yu

Considering the existing medical image watermarking algorithms, a single function often has limitations, and a multipurpose watermarking algorithm for medical images is proposed. First, medical images are divided into regions of interest (ROIs) and regions of noninterest (RONIs). Then, the authentication watermark produced for each subblock of the ROI is embedded into the corresponding mapping subblock. The visible watermark is embedded into the RONI, and, finally, the watermark information and constructed authentication information in each subblock of the ROI are embedded into the corresponding RONI subblock. Simulation results show that the embedded visible watermark can protect and facilitate medical image management. In addition, the proposed algorithm has strong robustness and very good visual quality. It can simultaneously realize copyright protection and content authentication and also has high tamper localization capability.


2010 ◽  
Vol 4 (1) ◽  
pp. 93-98 ◽  
Author(s):  
Salwa A.K. Mostafa ◽  
Naser El-sheimy ◽  
A.S. Tolba ◽  
F.M. Abdelkader ◽  
Hisham M. Elhindy

The last decade has witnessed an explosive use of medical images and Electronics Patient Record (EPR) in the healthcare sector for facilitating the sharing of patient information and exchange between networked hospitals and healthcare centers. To guarantee the security, authenticity and management of medical images and information through storage and distribution, the watermarking techniques are growing to protect the medical healthcare information. This paper presents a technique for embedding the EPR information in the medical image to save storage space and transmission overheads and to guarantee security of the shared data. In this paper a new method for protecting the patient information in which the information is embedded as a watermark in the discrete wavelet packet transform (DWPT) of the medical image using the hospital logo as a reference image. The patient information is coded by an error correcting code (ECC), BCH code, to enhance the robustness of the proposed method. The scheme is blind so that the EPR can be extracted from the medical image without the need of the original image. Therefore, this proposed technique is useful in telemedicine applications. Performance of the proposed method was tested using four modalities of medical images; MRA, MRI, Radiological, and CT. Experimental results showed no visible difference between the watermarked and the original image. Moreover, the proposed watermarking method is robust against a wide range of attacks such as JPEG coding, Gaussian noise addition, histogram equalization, gamma correction, contrast adjustment, and sharpen filter and rotation.


2020 ◽  
Vol 13 (6) ◽  
pp. 266-278
Author(s):  
Ledya Novamizanti ◽  
◽  
Ida Wahidah ◽  
Ni Wardana ◽  
◽  
...  

One way to prevent image duplication is by applying watermarking techniques. In this work, the watermarking process is applied to medical images using the Fast Discrete Curvelet Transforms (FDCuT), Discrete Cosine Transform (DCT), and Singular Value Decomposition (SVD) methods. The medical image of the host is transformed using FDCuT so that three subbands are obtained. High Frequency (HF) subband selected for DCT and SVD applications. Meanwhile, SVD was also applied to the watermark image. The singular value on the host image is exchanged with the singular value on the watermark. Insertion of tears by exchanging singular values does not cause the quality of medical images to decrease significantly. The experimental results prove that the proposed FDCuT-DCT-SVD algorithm produces good imperceptibility. The proposed algorithm is also resistant to various types of attacks, including JPEG compression, noise enhancement attacks, filtering attacks, and other common attacks.


Author(s):  
Imane Assini ◽  
Abdelmajid Badri ◽  
Aicha Sahel ◽  
Abdennaceur Baghdad

In order to contribute to the security of sharing and transferring medical images, we had presented a multiple watermarking technique for multiple protections; it was based on the combination of three transformations: the discrete wavelet transform (DWT), the fast Walsh-Hadamard transform (FWHT) and, the singular value decomposition (SVD). In this paper, three watermark images of sizes 512x 512 were inserted into a single medical image of various modalities such as magnetic resonance imaging (MRI), computed tomography (CT), and X-Radiation (X-ray). After applying DWT up to the third level on the original image, the high-resolution sub-bands were being selected subsequently to apply FWHT and then SVD. The singular values of the three watermark images were inserted into the singular values of the cover medical image. The experimental results showed the effectiveness of the proposed method in terms of quality and robustness compared to other reported techniques cited in the literature.


2019 ◽  
Vol 11 (2) ◽  
pp. 13-33 ◽  
Author(s):  
Surekah Borra ◽  
Rohit Thanki

In this article, a blind and robust medical image watermarking technique based on Finite Ridgelet Transform (FRT) and Singular Value Decomposition (SVD) is proposed. A host medical image is first transformed into 16 × 16 non-overlapping blocks and then ridgelet transform is applied on the individual blocks to obtain sets of ridgelet coefficients. SVD is then applied on these sets, to obtain the corresponding U, S and V matrix. The watermark information is embedded into the host medical image by modification of the value of the significant elements of U matrix. This proposed technique is tested on various types of medical images such as X-ray and CT scan. The simulation results revealed that this technique provides better imperceptibility, with an average PSNR being 42.95 dB for all test medical images. This technique also overcomes the limitation of the existing technique which is applicable on only the Region of Interest (ROI) of the medical image.


Sign in / Sign up

Export Citation Format

Share Document