A FRT - SVD Based Blind Medical Watermarking Technique for Telemedicine Applications

2019 ◽  
Vol 11 (2) ◽  
pp. 13-33 ◽  
Author(s):  
Surekah Borra ◽  
Rohit Thanki

In this article, a blind and robust medical image watermarking technique based on Finite Ridgelet Transform (FRT) and Singular Value Decomposition (SVD) is proposed. A host medical image is first transformed into 16 × 16 non-overlapping blocks and then ridgelet transform is applied on the individual blocks to obtain sets of ridgelet coefficients. SVD is then applied on these sets, to obtain the corresponding U, S and V matrix. The watermark information is embedded into the host medical image by modification of the value of the significant elements of U matrix. This proposed technique is tested on various types of medical images such as X-ray and CT scan. The simulation results revealed that this technique provides better imperceptibility, with an average PSNR being 42.95 dB for all test medical images. This technique also overcomes the limitation of the existing technique which is applicable on only the Region of Interest (ROI) of the medical image.

Author(s):  
Surekah Borra ◽  
Rohit Thanki

In this article, a blind and robust medical image watermarking technique based on Finite Ridgelet Transform (FRT) and Singular Value Decomposition (SVD) is proposed. A host medical image is first transformed into 16 × 16 non-overlapping blocks and then ridgelet transform is applied on the individual blocks to obtain sets of ridgelet coefficients. SVD is then applied on these sets, to obtain the corresponding U, S and V matrix. The watermark information is embedded into the host medical image by modification of the value of the significant elements of U matrix. This proposed technique is tested on various types of medical images such as X-ray and CT scan. The simulation results revealed that this technique provides better imperceptibility, with an average PSNR being 42.95 dB for all test medical images. This technique also overcomes the limitation of the existing technique which is applicable on only the Region of Interest (ROI) of the medical image.


he proposed paper work is implemented using Stationary Wavelet Transformation (SWT) with Singular Value Decomposition (SVD).Even though, there are many other transformations, the Stationary Wavelet Transformation method is chosen for its shift invariance property. The designed method has three steps; the first step is the decomposing of the Medical image into sub-bands using SWT to find the value of sub band and as a second step is to apply SVD, third step will combine both the images with scaling factor. The experiments were conducted over gray scale of MRI and CT Medical images. The statistics of proposed method indicates that imperceptibility of Watermarked Medical images have a Peak Signal to Noise Ratio (PSNR) value of 50 DB for medical images. The robustness is ensured by having Correlation Coefficient (CC) of 1 for the retrieved watermark images. Security for the watermark is extended by encrypting the watermark with chaotic sequence.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
R. Eswaraiah ◽  
E. Sreenivasa Reddy

In telemedicine while transferring medical images tampers may be introduced. Before making any diagnostic decisions, the integrity of region of interest (ROI) of the received medical image must be verified to avoid misdiagnosis. In this paper, we propose a novel fragile block based medical image watermarking technique to avoid embedding distortion inside ROI, verify integrity of ROI, detect accurately the tampered blocks inside ROI, and recover the original ROI with zero loss. In this proposed method, the medical image is segmented into three sets of pixels: ROI pixels, region of noninterest (RONI) pixels, and border pixels. Then, authentication data and information of ROI are embedded in border pixels. Recovery data of ROI is embedded into RONI. Results of experiments conducted on a number of medical images reveal that the proposed method produces high quality watermarked medical images, identifies the presence of tampers inside ROI with 100% accuracy, and recovers the original ROI without any loss.


2022 ◽  
Vol 16 (1) ◽  
pp. 0-0

One of the important issues in telemedicine field refers to an advanced secure communication. Digital image watermarking is an ideal solution since it protects the electronic patient information’s from unauthorized access. This paper presents a novel blind fragile-based image watermarking scheme in spatial domain that merges Speed Up Robust Features (SURF) descriptor with the well-known Weber Descriptors (WDs) and Arnold algorithm. It provides a good way for enhancing the image quality and time complexity for medical data integrity. Firstly, the watermark image is shuffled using Arnold chaotic map. Secondly, the SURF technique is practiced to Region of Interest (ROI) of the medical image and then the blocks around the SURF points are selected to insert the watermark. Finally, the watermark is encrusted and extracted using WDs. Experimental results show good image fidelity with the shortest execution time to ensure medical images integrity.


2021 ◽  
Vol 13 (2) ◽  
pp. 48-55
Author(s):  
Ledya Novamizanti ◽  
Irma Safitri ◽  
Hafizhan Bhamakerti Arindaka ◽  
Iwan Iwut Tritoasmoro

In telemedicine, data transmission in digital medical images and electronic medical records through the internet is vulnerable to various threats of theft and manipulation. Image watermarking is needed to provide authentication and security to medical images. This paper proposes an image watermarking scheme based on Redundant Discrete Wavelet Transform (RDWT) and Discrete Cosine Transform (DCT) with watermark encryption using Arnold transform. First, the original host medical image was decomposed into four subbands using RDWT. Then, DCT is applied to the LH subband of the RDWT. On the other hand, the watermark is scrambled using Arnold transform to ensure identity security. The singular value of the watermarked image is obtained by modifying the singular value of the host image and the watermark. Tests were carried out on different medical images, namely X-ray, MRI, CT, and ultrasound, with a watermark in a proprietary logo. The host medical image is the same size as the watermark image. The result of this study can provide high authentication, imperceptibility and security in medical images, with an average PSNR value of 65.67 dB, SSIM 1, BER 0, NC 1. This scheme is resistant to JPEG compression, noise addition, filtering, image sharpening, image enhancement, geometric operations, motion blur, image sharpening, and histogram equalization.


2020 ◽  
Vol 13 (6) ◽  
pp. 266-278
Author(s):  
Ledya Novamizanti ◽  
◽  
Ida Wahidah ◽  
Ni Wardana ◽  
◽  
...  

One way to prevent image duplication is by applying watermarking techniques. In this work, the watermarking process is applied to medical images using the Fast Discrete Curvelet Transforms (FDCuT), Discrete Cosine Transform (DCT), and Singular Value Decomposition (SVD) methods. The medical image of the host is transformed using FDCuT so that three subbands are obtained. High Frequency (HF) subband selected for DCT and SVD applications. Meanwhile, SVD was also applied to the watermark image. The singular value on the host image is exchanged with the singular value on the watermark. Insertion of tears by exchanging singular values does not cause the quality of medical images to decrease significantly. The experimental results prove that the proposed FDCuT-DCT-SVD algorithm produces good imperceptibility. The proposed algorithm is also resistant to various types of attacks, including JPEG compression, noise enhancement attacks, filtering attacks, and other common attacks.


Author(s):  
Imane Assini ◽  
Abdelmajid Badri ◽  
Aicha Sahel ◽  
Abdennaceur Baghdad

In order to contribute to the security of sharing and transferring medical images, we had presented a multiple watermarking technique for multiple protections; it was based on the combination of three transformations: the discrete wavelet transform (DWT), the fast Walsh-Hadamard transform (FWHT) and, the singular value decomposition (SVD). In this paper, three watermark images of sizes 512x 512 were inserted into a single medical image of various modalities such as magnetic resonance imaging (MRI), computed tomography (CT), and X-Radiation (X-ray). After applying DWT up to the third level on the original image, the high-resolution sub-bands were being selected subsequently to apply FWHT and then SVD. The singular values of the three watermark images were inserted into the singular values of the cover medical image. The experimental results showed the effectiveness of the proposed method in terms of quality and robustness compared to other reported techniques cited in the literature.


Author(s):  
Rahul Dixit ◽  
Amita Nandal ◽  
Arvind Dhaka ◽  
Vardan Agarwal ◽  
Yohan Varghese

Background: Nowadays information security is one of the biggest issues of social networks. The multimedia data can be tampered with, and the attackers can then claim its ownership. Image watermarking is a technique that is used for copyright protection and authentication of multimedia. Objective: We aim to create a new and more robust image watermarking technique to prevent illegal copying, editing and distribution of media. Method : The watermarking technique proposed in this paper is non-blind and employs Lifting Wavelet Transform on the cover image to decompose the image into four coefficient matrices. Then Discrete Cosine Transform is applied which separates a selected coefficient matrix into different frequencies and later Singular Value Decomposition is applied. Singular Value Decomposition is also applied to the watermarking image and it is added to the singular matrix of the cover image which is then normalized followed by the inverse Singular Value Decomposition, inverse Discrete Cosine Transform and inverse Lifting Wavelet Transform respectively to obtain an embedded image. Normalization is proposed as an alternative to the traditional scaling factor. Results: Our technique is tested against attacks like rotation, resizing, cropping, noise addition and filtering. The performance comparison is evaluated based on Peak Signal to Noise Ratio, Structural Similarity Index Measure, and Normalized Cross-Correlation. Conclusion: The experimental results prove that the proposed method performs better than other state-of-the-art techniques and can be used to protect multimedia ownership.


Sign in / Sign up

Export Citation Format

Share Document