scholarly journals Phase Fitted And Amplification Fitted Of Runge-Kutta-Fehlberg Method Of Order 4(5) For Solving Oscillatory Problems

2020 ◽  
Vol 17 (2(SI)) ◽  
pp. 0689
Author(s):  
Mohammed Salih ◽  
Fudziah Ismail ◽  
Norazak Senu

In this paper, the proposed phase fitted and amplification fitted of the Runge-Kutta-Fehlberg method were derived on the basis of existing method of 4(5) order to solve ordinary differential equations with oscillatory solutions. The recent method has null phase-lag and zero dissipation properties. The phase-lag or dispersion error is the angle between the real solution and the approximate solution. While the dissipation is the distance of the numerical solution from the basic periodic solution. Many of problems are tested over a long interval, and the numerical results have shown that the present method is more precise than the 4(5) Runge-Kutta-Fehlberg method.

1996 ◽  
Vol 11 (26) ◽  
pp. 4731-4744 ◽  
Author(s):  
T. E. SIMOS ◽  
P. S. WILLIAMS

Some new modified Runge–Kutta methods with minimal phase lag are developed for the numerical solution of the eigenvalue Schrödinger equation and related problems with oscillating solutions. These methods are based on the very well-known Runge–Kutta method of order 4. For the numerical solution of the eigenvalue Schrödinger equation, we investigate two cases: (i) the specific case in which the potential V(x) is an even function with respect to x; it is assumed, also, that the wave functions tend to zero for x → ±∞; (ii) the general case for the well-known cases of the Morse potential and Woods–Saxon or optical potential. Also, we have applied the new methods to some well-known problems with oscillatory solutions. Numerical and theoretical results show that this new approach is more efficient than the well-known classical fourth order Runge–Kutta method and the Numerov method.


2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
Najeeb Alam Khan ◽  
Muhammad Jamil ◽  
Syed Anwar Ali ◽  
Nadeem Alam Khan

A new approximate method for solving the nonlinear Duffing-van der pol oscillator equation is proposed. The proposed scheme depends only on the two components of homotopy series, the Laplace transformation and, the Padé approximants. The proposed method introduces an alternative framework designed to overcome the difficulty of capturing the behavior of the solution and give a good approximation to the solution for a large time. The Runge-Kutta algorithm was used to solve the governing equation via numerical solution. Finally, to demonstrate the validity of the proposed method, the response of the oscillator, which was obtained from approximate solution, has been shown graphically and compared with that of numerical solution.


2010 ◽  
Author(s):  
N. G. Tselios ◽  
Z. A. Anastassi ◽  
T. E. Simos ◽  
Theodore E. Simos ◽  
George Psihoyios ◽  
...  

2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
N. A. Ahmad ◽  
N. Senu ◽  
F. Ismail

A phase-fitted and amplification-fitted two-derivative Runge-Kutta (PFAFTDRK) method of high algebraic order for the numerical solution of first-order Initial Value Problems (IVPs) which possesses oscillatory solutions is derived. We present a sixth-order four-stage two-derivative Runge-Kutta (TDRK) method designed using the phase-fitted and amplification-fitted property. The stability of the new method is analyzed. The numerical experiments are carried out to show the efficiency of the derived methods in comparison with other existing Runge-Kutta (RK) methods.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
K. W. Moo ◽  
N. Senu ◽  
F. Ismail ◽  
M. Suleiman

Two new Runge-Kutta-Nyström (RKN) methods are constructed for solving second-order differential equations with oscillatory solutions. These two new methods are constructed based on two existing RKN methods. Firstly, a three-stage fourth-order Garcia’s RKN method. Another method is Hairer’s RKN method of four-stage fifth-order. Both new derived methods have two variable coefficients with phase-lag of order infinity and zero amplification error (zero dissipative). Numerical tests are performed and the results show that the new methods are more accurate than the other methods in the literature.


2013 ◽  
Vol 2013 ◽  
pp. 1-4 ◽  
Author(s):  
Jun Wang

He’s inequalities and the Max-Min approach are briefly introduced, and their application to a coupled cubic nonlinear packaging system is elucidated. The approximate solution is obtained and compared with the numerical solution solved by the Runge-Kutta algorithm yielded by computer simulation. The result shows a great high accuracy of this method. The research extends the application of He’s Max-Min approach for coupled nonlinear equations and provides a novel method to solve some essential problems in packaging engineering.


Sign in / Sign up

Export Citation Format

Share Document