scholarly journals Design of L-Band Multiwavelength Laser for TDM/WDM PON Application

2021 ◽  
Vol 18 (4(Suppl.)) ◽  
pp. 1365
Author(s):  
Nani Fadzlina Naim ◽  
Muhammad Amirul Hafiz Mohamed Hashim ◽  
Suzi Seroja Sarnin ◽  
Norsuzila Ya'acob ◽  
Latifah Sarah Supian

This paper presents on the design of L-Band Multiwavelength laser for Hybrid Time Division Multiplexing/ Wavelength Division Multiplexing (TDM/WDM) Passive Optical Network (PON) application. In this design, an L-band Mulltiwavelength Laser is designed as the downstream signals for TDM/WDM PON. The downstream signals ranging from 1569.865 nm to 1581.973 nm with 100GHz spacing. The multiwavelength laser is designed using OptiSystem software and it is integrated into a TDM/WDM PON that is also designed using OptiSystem simulation software. By adapting multiwavelength fiber laser into a TDM/WDM network, a simple and low-cost downstream signal is proposed. From the simulation design, it is found that the proposed design is suitable to be used in TDM/WDM PON for up to 64 Optical Network Units (ONUs).

2019 ◽  
Vol 0 (0) ◽  
Author(s):  
Meet Kumari ◽  
Reecha Sharma ◽  
Anu Sheetal

AbstractNowadays, bandwidth demand is enormously increasing, that causes the existing passive optical network (PON) to become the future optical access network. In this paper, next generation passive optical network 2 (NG-PON2) based, optical time division multiplexing passive optical network (OTDM-PON), wavelength division multiplexing passive optical network (WDM-PON) and time & wavelength division multiplexing passive optical network (TWDM-PON) systems with 20 Gbps (8 × 2.5 Gbps) downstream and 20 Gbps (8 × 2.5 Gbps) upstream capacity for eight optical network units has been proposed. The performance has been compared by varying the input power (−6 to 27 dBm) and transmission distance (10–130 km) in terms of Q-factor and optical received power in the presence of fiber noise and non-linearities. It has been observed that TWDM-PON outperforms OTDM-PON and WDM-PON for high input power and data rate (20/20 Gbps). Also, TWDM-PON shows its superiority for long-reach transmission up to 130 km, which is a cost-effective solution for future NG-PON2 applications.


2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Shuai Chen ◽  
Wei Nai ◽  
Fangqi Zhang ◽  
Shaoyin Wang ◽  
Decun Dong ◽  
...  

Wavelength-division-multiplexing passive-optical-network (WDM-PON) has been recognized as a promising solution of the “last mile” access as well as multibroadband data services access for end users, and WDM-RoF-PON, which employs radio-over-fiber (RoF) technique in WDM-PON, is even a more attractive approach for future broadband fiber and wireless access for its strong availability of centralized multiservices transmission operation and its transparency for bandwidth and signal modulation formats. As for multiservices development in WDM-RoF-PON, various system designs have been reported and verified via simulation or experiment till now, and the scheme with multiservices transmitted in each single wavelength channel is believed as the one that has the highest bandwidth efficiency; however, the corresponding mathematical verification is still hard to be found in state-of-the-art literature. In this paper, system design and data transmission performance of a quintuple services integrated WDM-RoF-PON which jointly employs carrier multiplexing and orthogonal modulation techniques, have been theoretically analyzed and verified in detail; moreover, the system design has been duplicated and verified experimentally and the theory system of such WDM-RoF-PON scheme has thus been formed.


2015 ◽  
Vol 36 (2) ◽  
Author(s):  
N. Ahmed ◽  
Hilal A. Fadhil ◽  
S. A. Aljunid ◽  
Md. Sharafat Ali ◽  
Matiur Rahman

AbstractIn this paper, the performance of wavelength division multiplexing-passive optical network (WDM-PON) system using the erbium-doped fiber amplifier (EDFA) is optimized and evaluated. The optimization is analyzed by finding the EDFA length range at which the output power produced are the highest and the pump power range at which the gain flatness produced are within the effective range (0.3 dB). After the optimization process, the optimized EDFA system produces the gain of 26.6±0.292 dB, noise figure of 3.82 dB and output power of 7 dBm and the system is then implemented into WDM system. The performance of WDM system is compared against the system without EDFA in terms of bit error rate (BER). Results obtained prove that the proposed system with the EDFA consistently performs better than the conventional system.


2014 ◽  
Vol 989-994 ◽  
pp. 3806-3809
Author(s):  
Ji Hong Liu ◽  
Yan Ping Ma ◽  
Shao Rui Ren ◽  
Yang Yang ◽  
Bin Zhang

The wavelength division multiplexing passive optical network (WDM-PON) incorporated with colorless optical network units (ONUs) and centralized light source is the most promising approach for next generation PON. A cost-effective architecture utilizing coherent detection for upstream (US) signal is proposed to enlarge the reach of such WDM-PON systems. Simulation results show that a symmetric 10-Gbps WDM-PON with 80km error-free transmission is realized without using any optical amplifiers.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Md. Harun Ar Rashid ◽  
Subrata Sikder ◽  
Kazi Farhan Sadik ◽  
S.H. Shah Newaz ◽  
Kazi Towfiqul Islam Jayner ◽  
...  

Abstract We demonstrate the design and simulation of a long range four-channel wavelength division multiplexing-passive optical network (WDM-PON) operating at 40 Gb/s (4 × 10 Gb/s) in downstream transmission for undersea wireless optical communication. The proposed model consists of two separate subsections between the optical transmitter and receiver. The first subsection consists of the central office and 50 km long feeder fiber for transmitting the optical signal from a distant base station to the 1 × 4 optical demultiplexer located at the sea shore. The second subsection comprises 500 m distributed fiber from the 1 × 4 optical demultiplexer to the terminal point placed at the bottom of the sea and 15–20 m optical wireless channel inside sea water. Simulation results confirmed successful transmission of optical signals from the 50 km distant optical transmitter to the optical receiver located maximum 15 m inside the sea water with a signal-to-noise ratio of ∼20.96 dB, bit error rate of ∼1.55 × 10−8, and quality factor of ∼5.584. The eye diagram at the receiving end also exemplifies quality downstream data transmission at a rate of 10 Gb/s per channel. In addition, we compare the simulation results of the four-channel 40 Gb/s WDM-PON system with a four-channel WDM-PON system operating at 4 Gb/s (4 × 1 Gb/s). Simulation results confirm maximum reach of 17.5 m inside sea water at a cost of significant reduction in data rate. Furthermore, we analyze the system availability of the proposed WDM-PONs and find convincing results for high-speed secured data transmission under water.


2016 ◽  
Vol 37 (3) ◽  
Author(s):  
Danping Ren ◽  
Shanshan Wu ◽  
Lijing Zhang

AbstractIn view of the characteristics of the global control and flexible monitor of software-defined networks (SDN), we proposes a new optical access network architecture dedicated to Wavelength Division Multiplexing-Passive Optical Network (WDM-PON) systems based on SDN. The network coding (NC) technology is also applied into this architecture to enhance the utilization of wavelength resource and reduce the costs of light source. Simulation results show that this scheme can optimize the throughput of the WDM-PON network, greatly reduce the system time delay and energy consumption.


2018 ◽  
Vol 7 (4) ◽  
pp. 6652
Author(s):  
N. Subhashini ◽  
A. Brintha Therese

With growing number of applications and network traffic, optic fibers are extensively used in the access part of the network. Passive Optical Networks (PON) in particular, Ethernet PON (EPON) networks based on Time Division Multiple Access (TDMA) are more prominently used in many parts of the world. Though Wavelength Division Multiplexing (WDM) PON has its own advantages, considering the cost and utilisation of such networks in the access part makes it less useful. On the other hand, Hybrid PON network combines the advantages of both EPON and WDM PON Networks. The objective of this paper is to identify suitable electrical filters for a 16-channel Hybrid Passive Optical Network with a transmission rate of 10Gbps per channel, by analysing their performance in terms of Q factor and Bit Error Rate. Different filters like the Bessel filter, Gaussian filter, Raised Cosine Filter, Rectangular filter, Butterworth filter, Chebyshev Filter are compared and their performances are evaluated. DB Modulation format that provides a longer reach is used at the transmitter to evaluate the different scenarios and the simulation is carried out using Optisystem.


Author(s):  
Rastislav Róka

The wavelength division multiplexing passive optical network (WDM-PON) is a natural path forward to satisfy demands of optical network operators to develop valuable converged optical metropolitan and access networks. For effective utilization of possible transmission capacities, available wavelengths must be carefully designed for their utilization. Therefore, some principles of wavelength allocation and scheduling methods are characterized and specified. For ensuring the network reliability, efficient traffic protection mechanisms must be implemented. Simultaneously, different equipment in remote nodes can be installed. Therefore, different WDM-PON network designs with traffic protection securing are analyzed and compared. Protection possibilities for various network parts and elements are characterized and optical power budgets are evaluated and optimized. Finally, a research of the DWA algorithms can be realized using functionalities of selected wavelength scheduling methods. Moreover, the wavelength transmission capacity characterizing can be simultaneously determined.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Dinesh Kumar Verma ◽  
Amit Kumar Garg

Abstract This paper focused on the novel design of receiver side of wavelength division multiplexing passive optical network (WDM-PON). It serves the need for a dramatic change in demand for high data rate beyond 10 gigabits per second (Gbps) at the last mile for a larger coverage area or distance. This increase in demand for higher bandwidth is due to the emerging future technologies like Internet of things (IoT), silicon on chip (SoC), cloud computing, machine learning (ML), and artificial intelligence (AI). Simulation results demonstrated for the different coverage areas which compare the bit error rate (BER), quality (Q)-Factor, and eye height as per the guidelines of ITU-T. It has been predicted that the proposed WDM-PON design supports up to a distance of 60 km. Results have been verified for 40 km, 50 km, 60 km, and 70 km, respectively, at 100 GHz frequency spacing with acceptable BER and better quality (Q)-factor as defined by ITU.


Sign in / Sign up

Export Citation Format

Share Document