A textural and mineralogical study of the relationship of iron ore to banded iron-formation in the Hamersley iron province of Western Australia

1980 ◽  
Vol 75 (2) ◽  
pp. 184-209 ◽  
Author(s):  
R. C. Morris
2020 ◽  
Vol 105 (9) ◽  
pp. 1317-1325
Author(s):  
Ray Burgess ◽  
Sarah L. Goldsmith ◽  
Hirochika Sumino ◽  
Jamie D. Gilmour ◽  
Bernard Marty ◽  
...  

Abstract Past changes in the halogen composition of seawater are anticipated based on the differing behavior of chlorine and bromine that are strongly partitioned into seawater, relative to iodine, which is extremely depleted in modern seawater and enriched in marine sediments due to biological uptake. Here we assess the use of chert, a chemical sediment that precipitated throughout the Precambrian, as a proxy for halide ratios in ancient seawater. We determine a set of criteria that can be used to assess the primary nature of halogens and show that ancient seawater Br/Cl and I/Cl ratios can be resolved in chert samples from the 2.5 Ga Dales Gorge Member of the Brockman Banded Iron Formation, Hamersley Group, Western Australia. The values determined of Br/Cl ~2 × 10-3 M and I/Cl ~30 × 10-6 M are comparable to fluid inclusions in hydrothermal quartz from the 3.5 Ga North Pole area, Pilbara Craton, Western Australia, that were the subject of previous reconstructions of ancient ocean salinity and atmospheric isotopic composition. While the similar Br/Cl and I/Cl values indicate no substantial change in the ocean halide system over the interval 2.5–3.5Ga, compared to modern seawater, the ancient ocean was enriched in Br and I relative to Cl. The I/Cl value is intermediate between bulk Earth (assumed chondritic) and the modern seawater ratio, which can be explained by a smaller organic reservoir because this is the major control on marine iodine at the present day. Br/Cl ratios are about 30% higher than both modern seawater and contemporary seafloor hydrothermal systems, perhaps indicating a stronger mantle buffering of seawater halogens during the Archean.


2007 ◽  
Vol 144 (2) ◽  
pp. 271-287 ◽  
Author(s):  
MANISH A. MAMTANI ◽  
A. MUKHERJI ◽  
A. K. CHAUDHURI

This paper provides a detailed documentation of microstructures developed in the banded iron formation (BIF) of Gua mine, located in the Bonai Synclinorium (eastern India), where the rocks have been subjected to three deformations (D1 to D3). Folded iron ores, quartz strain fringes around rigid core objects and folded iron ore layers, and refracted quartz veins are described from samples taken from D2 folds in the banded iron formation. Orientations of microstructures are compared with mesoscopic structures to interpret the generations of ore minerals, planar structures and the time relationship between deformation and development of different microstructures. The mechanism of D2 folding is worked out and its bearing on microstructure development is discussed. The D2 folds are inferred to have developed by a combination of tangential longitudinal strain in the competent layer, flexural flow in the incompetent layers and flexural slip at the interface between layers of differing competence. Homogeneous flattening strain superposed the earlier strain, which led to modification of the folds in the competent layer from class 1B to 1C. This strain is quantified and is found to be higher in the limb than the hinge of a fold. Diffusive mass transfer by solution and bulging dynamic recrystallization in quartz are inferred as the dominant deformation processes during folding. Moreover, based on comparison with published deformation microstructure maps, the microstructures of the present study are estimated to have developed between 300 and 350 °C temperatures at a strain rate of 10−14–10−12 s−1, which are geologically realistic conditions for naturally deformed rocks.


Sign in / Sign up

Export Citation Format

Share Document