Note on radiometric age determinations of two granites from western Corsica; the white granite of the Ota-association and the red Calanche granite

1988 ◽  
Vol IV (6) ◽  
pp. 973-977 ◽  
Author(s):  
W. Van Tellingen ◽  
R. H. Verschure ◽  
P. Andriessen
Author(s):  
A. Graham Leslie ◽  
Allen P. Nutman

NOTE: This article was published in a former series of GEUS Bulletin. Please use the original series name when citing this article, for example: Leslie, A. G., & Nutman, A. P. (2000). Episodic tectono-thermal activity in the southern part of the East Greenland Caledonides. Geology of Greenland Survey Bulletin, 186, 42-49. https://doi.org/10.34194/ggub.v186.5214 _______________ Isotopic data from the Renland augen granites of the Scoresby Sund region (Figs 1, 2) provided some of the first convincing support for relicts of potentially Grenvillian tectono-thermal activity within the East Greenland Caledonides. In Renland, Chadwick (1975) showed the presence of major bodies of augen granite (Fig. 2) interpreted by Steiger et al. (1979), on the basis of Rb–Sr whole rock and U–Pb zircon age determinations, to have been emplaced about 1000 Ma ago.


2020 ◽  
Vol 6 (1) ◽  
pp. 393-402
Author(s):  
Maria Clara Martinelli ◽  
Mauro Coltelli ◽  
Marco Manni ◽  
Letizia Bonizzoni ◽  
Alessandra Guglielmetti ◽  
...  

AbstractThis research project concerns the study, analysis and dating of obsidian flows on the island of Lipari, in relation to the population of the Aeolian Islands, during the Neolithic period.The collection, processing and diffusion of Lipari obsidian characterise the Neolithic population of Lipari and the entire Mediterranean. By improving the knowledge of supply methods in the territory, it will be possible to formulate hypotheses on the chronology of the sources, the ways of collecting the raw material and on the mobility of the Neolithic communities in the Aeolian Islands. The scientific research is divided into two main topics: the first concerns the analytical and methodological aspects of archaeological and geological studies of Lipari obsidian; the second, the formation of obsidian at Lipari, their sources and lithological characteristics. Throughout the duration of this study we will perform new age determinations of Neolithic obsidian artefacts and geological samples, directly with the method of fission track, and indirectly dating paleo soils using the radiocarbon method.


1976 ◽  
Vol 13 (6) ◽  
pp. 749-773 ◽  
Author(s):  
J. L. Roy ◽  
P. L. Lapointe

Thermal, chemical, and alternating field (and two-stage) cleaning treatments of Huronian sediments and Nipissing diabase (which intrudes the sediments) from the Cobalt area yield five directions of magnetizations (A–E) of high stability; A, B, C, and E are found in the sediments, and C, D, and E in the diabase. It is suggested that magnetization B (337°, +52°; α95 = 8°; pole 158 °E, 67 °N) was acquired shortly after deposition of the Firstbrook beds [Formula: see text]; magnetization C (259°, +82°; α95 = 5°; pole 258 °E, 42 °N), found in both the diabase and sediments in contact with the diabase, was acquired during cooling following emplacement of the diabase [Formula: see text]; and magnetizations D and E, yielding poles at 264 °E, 15 °S and 000°, 09 °N respectively, were produced during the Hudsonian orogeny (−1850 to −1700 Ma). This interpretation resolves the previous inconsistencies between poles and age determinations. Good agreement between results from the Nipissing diabase and other igneous bodies indicate that widespread igneous events occurred in the time range approximately −2200 to −2100 Ma, immediately following deposition of Huronian sediments. This is referred to as 'Post-Huronian Igneous Events'. A proposed apparent polar path relative to Laurentia shows two distinct motions; for the 2300–1850 Ma interval, a latitudinal change (roughly along longitude 250° E) from high [Formula: see text] to low [Formula: see text] latitudes and, for the 1850–1500 Ma interval, a displacement along the present-day equator with first an eastward motion to about 000° longitude followed by a westward motion to 240° E longitude; the apex of the eastward excursion is given a date of [Formula: see text]. It is possible that this reflects a rotation of Laurentia about a vertical axis at the time of and following the Hudsonian orogeny. Subsequent uplift and cooling would explain the many overprinted stable magnetizations yielding poles distributed along the equator (track 4). Latitude maps indicate that Laurentia was in high latitudes from 2200–2000 Ma and in intermediate to low latitudes from 1900–1500 Ma.


Sign in / Sign up

Export Citation Format

Share Document