Episodic tectono-thermal activity in the southern part of the East Greenland Caledonides

Author(s):  
A. Graham Leslie ◽  
Allen P. Nutman

NOTE: This article was published in a former series of GEUS Bulletin. Please use the original series name when citing this article, for example: Leslie, A. G., & Nutman, A. P. (2000). Episodic tectono-thermal activity in the southern part of the East Greenland Caledonides. Geology of Greenland Survey Bulletin, 186, 42-49. https://doi.org/10.34194/ggub.v186.5214 _______________ Isotopic data from the Renland augen granites of the Scoresby Sund region (Figs 1, 2) provided some of the first convincing support for relicts of potentially Grenvillian tectono-thermal activity within the East Greenland Caledonides. In Renland, Chadwick (1975) showed the presence of major bodies of augen granite (Fig. 2) interpreted by Steiger et al. (1979), on the basis of Rb–Sr whole rock and U–Pb zircon age determinations, to have been emplaced about 1000 Ma ago.

1974 ◽  
Vol 66 ◽  
pp. 21-31
Author(s):  
P.D Nunes ◽  
R.H Steiger ◽  
D Bridgwater

Age determinations were made on 3 zircon fractions extracted from gabbroanorthosite inclusions which occur as tectonically dislocated pods in quartzofeldspathic gneisses on the eastern end of Kitak island, South-Bast Greeniand (fig. 5). The anorthosites were selected for study because they are derived from a lithologically distinctive suite of rocks found over a large part of the Archaean craton of the North AtIantic area (Bridgwater et al., 1973b). While there is no evidence that all the anorthosites of this type are contemporaneous their formation appears to require special conditions in the ernst and they are thus likely to be a useful stratigraphic tool. Furthermore the coarse-grained refractory nature of these rocks means that they retain their lithological identity during later tectonic, anatactic and metasomatic events to a far greater degree than the quartzofeldspathic, semipelitic and amphibolitic units making up the major part of the gneiss complex in which the anorthosites occur.


Author(s):  
Adam A. Garde ◽  
John Grocott ◽  
Ken J.W. McCaffrey

NOTE: This article was published in a former series of GEUS Bulletin. Please use the original series name when citing this article, for example: Garde, A. A., Grocott, J., & McCaffrey, K. J. (1999). New insights on the north-eastern part of the Ketilidian orogen in South-East Greenland. Geology of Greenland Survey Bulletin, 183, 23-33. https://doi.org/10.34194/ggub.v183.5201 _______________ During a five week period in August–September 1998 the poorly known north-eastern part of the Palaeoproterozoic (c. 1800 Ma) Ketilidian orogen between Kangerluluk and Mogens Heinesen Fjord in South-East Greenland (Fig. 1) was investigated in continuation of recent geological research in other parts of the orogen. The north-eastern part of the orogen is remote from inhabited areas. It is mountainous and comprises a wide nunatak zone which can only be reached easily by helicopter. Furthermore, access to coastal areas by boat is difficult because many parts of the coast are prone to be ice-bound even during the summer months, due to wind- and current-driven movements of the sea ice.


Author(s):  
Henrik Rasmussen ◽  
Paul Martin Holm

NOTE: This article was published in a former series of GEUS Bulletin. Please use the original series name when citing this article, for example: Rasmussen, H., & Holm, P. M. (1999). Proterozoic thermal activity in the Archaean basement of the Disko Bugt region and eastern Nuussuaq, West Greenland: evidence from K-Ar and 40Ar-39Ar mineral age investigations. Geology of Greenland Survey Bulletin, 181, 55-64. https://doi.org/10.34194/ggub.v181.5113 _______________ K-Ar and 40Ar-39Ar analyses of amphiboles from Archaean amphibolites and gneisses show that Proterozoic tectono-thermal activity has played an important role in the metamorphic and structural development of the Precambrian rocks around north-eastern Disko Bugt and in eastern Nuussuaq. Proterozoic thermal activity lead to resetting of the K-Ar ages of amphiboles in eastern Nuussuaq, resulting in ages of c. 1750 to 1925 Ma; in the Disko Bugt area the effects are seen in total or partial resetting with K-Ar ages scattering mostly between 2750 and 1870 Ma. Resetting is caused either by total diffusion of earlier accumulated radiogenic argon or by complete recrystallisation of the amphiboles. Archaean 40Ar-39Ar ages obtained from mafic xenoliths within the Atâ tonalite show that not all parts of the area suffered argon loss during Proterozoic reheating. Incorporation of significant proportions of excess argon in some amphiboles is seen from 40Ar-39Ar mineral age spectra obtained for samples from supracrustal rocks and from mafic xenoliths in the Atâ tonalite. Phlogopite phenocrysts from a lamproite stock yielded a K-Ar age of 1764 ± 24 Ma, identical to a previously determined K-Ar age of the matrix phlogopite. These ages probably date the emplacement of the lamproite, and mark the time after which no tectono-thermal events affected the area.


Author(s):  
Stefan Bernstein ◽  
C. Kent Brooks

NOTE: This article was published in a former series of GEUS Bulletin. Please use the original series name when citing this article, for example: Bernstein, S., & Brooks, C. K. (1998). Mantle xenoliths from Tertiary lavas and dykes on Ubekendt Ejland, West Greenland. Geology of Greenland Survey Bulletin, 180, 152-154. https://doi.org/10.34194/ggub.v180.5099 _______________ Mantle xenoliths were found in Tertiary alkaline (basanitic) lavas on Ubekendt Ejland in West Greenland in the mid 1970s by J.G. Larsen. Microprobe analyses of olivine, pyroxene and spinel in two mantle xenoliths, suggested that the xenoliths on Ubekendt Ejland are highly depleted and have high modal olivine contents, and low modal orthopyroxene and clinopyroxene (Larsen 1982). In this respect the mantle xenoliths from Ubekendt Ejland are very similar to the spinel harzburgites from Wiedemann Fjord, in the Tertiary volcanic province of East Greenland (Brooks & Rucklidge 1973; Bernstein et al. 1998). Larsen (1981) also reported dykes containing mantle nodules and a varied suite of cumulates and megacrysts, one of which has subsequently been dated to 34.1 ± 0.2 Ma (Storey et al. 1998) The basalt flow that carries the xenoliths is from what is defined as the Erqua Formation which occurs at the top of the lava succession in western Ubekendt Ejland (Fig. 1; Drever & Game 1948; Larsen 1977a, b). The basalts have not been dated, but are younger than 52.5 Ma, which is the date obtained for the underlying formation (Storey et al. 1998). During July 1997, we spent three weeks collecting xenoliths and prospecting for xenolith-bearing dykes in the Uummannaq district of central West Greenland. The field work resulted in an extensive collection of xenoliths from an alkaline basalt flow described by Larsen (1977a, b), as well as the discovery of a dyke carrying a large number of ultramafic xenoliths of various origins. 


Author(s):  
Jesper Kresten Nielsen ◽  
Mikael Pedersen

NOTE: This article was published in a former series of GEUS Bulletin. Please use the original series name when citing this article, for example: Kresten Nielsen, J., & Pedersen, M. (1998). Hydrothermal activity in the Upper Permian Ravnefjeld Formation of central East Greenland – a study of sulphide morphotypes. Geology of Greenland Survey Bulletin, 180, 81-87. https://doi.org/10.34194/ggub.v180.5090 _______________ Bituminous shales of the Ravnefjeld Formation were deposited in the subsiding East Greenland basin during the Upper Permian. The shales are exposed from Jameson Land in the south (71°N; Fig. 1) to Clavering Ø in the north (74°20′N) and have attracted considerable attention due to their high potential as hydrocarbon source rocks (Piasecki & Stemmerik 1991; Scholle et al. 1991; Christiansen et al. 1992, 1993a, b). Furthermore, enrichment of lead, zinc and copper has been known in the Ravnefjeld Formation on Wegener Halvø since 1968 (Lehnert-Thiel 1968; Fig. 1). This mineralisation was assumed to be of primary or early diagenetic origin due to similarities with the central European Kupferschiefer (Harpøth et al. 1986). Later studies, however, suggested base metal mineralisation in the immediately underlying carbonate reefs to be Tertiary in age (Stemmerik 1991). Due to geographical coincidence between the two types of mineralisation, a common history is a likely assumption, but a timing paradox exists. A part of the TUPOLAR project on the ‘Resources of the sedimentary basins of North and East Greenland’ has been dedicated to re-investigation of the mineralisation in the Ravnefjeld Formation in order to determine the genesis of the mineralisation and whether or not primary or early diagenetic base metal enrichment has taken place on Wegener Halvø, possibly in relation to an early period of hydrothermal activity. One approach to this is to study the various sulphides in the Ravnefjeld Formation; this is carried out in close co-operation with a current Ph.D. project at the University of Copenhagen, Denmark. Diagenetically formed pyrite is a common constituent of marine shales and the study of pyrite morphotypes has previously been successful from thermalli immature parts of elucidating depositional environment and thermal effects in the Alum Shale Formation of Scandinavia (Nielsen 1996; Nielsen et al. 1998). The present paper describes the preliminary results of a similar study on pyrite from thermally immature parts of the Ravnefjeld Formation which, combined with the study of textures of base metal sulphides in the Wegener Halvø area (Fig. 1), may provide an important step in the evaluation of the presence or absence of early thermal activity on (or below) the Upper Permian sea floor.


Author(s):  
Kai Sørensen

NOTE: This article was published in a former series of GEUS Bulletin. Please use the original series name when citing this article, for example: Sørensen, K. (2001). The year in focus, 2000. Geology of Greenland Survey Bulletin, 189, 7-10. https://doi.org/10.34194/ggub.v189.5148 _______________ The year 2000 was unusual in that it lacked major field activity directly involved with the systematic geological mapping of Greenland. However, field activities were again many and varied, including a successful highresolution seismic survey offshore central West Greenland, and a joint Geological Survey of Denmark and Greenland (GEUS) – Danish Lithosphere Centre (DLC) project centred on Kangerlussuaq in southern East Greenland. Of the Survey’s 354 personnel, 93 were allocated to Greenland-related activities (Table 1). The Greenland level of activity in 2000, both in Copenhagen and in the field, thus compared favourably with that of 1999.


1987 ◽  
Vol 134 ◽  
pp. 25-37
Author(s):  
B.T Hansen ◽  
J.D Friderichsen

In Liverpool Land in the eastern part of the Scoresby Sund region gneisses and migmatites were intruded by a number of intermediate plutonites and by younger granites. A number of K-Ar, Rb-Sr and U-Pb isotope age determinations indicate that: 1) the gneisses have a pre-CaIedonian as well as a CaIedonian history, 2) the migmatites were thoroughly reworked during the late part of the Caledonian orogeny, while 3) the plutonic rocks all seem to have been intruded during the Caledonian orogeny.


Sign in / Sign up

Export Citation Format

Share Document