scholarly journals On approximate solutions of linear equations in Banach spaces

1958 ◽  
Vol 083 (4) ◽  
pp. 389-398
Author(s):  
Vlastimil Pták
Author(s):  
David Ek ◽  
Anders Forsgren

AbstractThe focus in this paper is interior-point methods for bound-constrained nonlinear optimization, where the system of nonlinear equations that arise are solved with Newton’s method. There is a trade-off between solving Newton systems directly, which give high quality solutions, and solving many approximate Newton systems which are computationally less expensive but give lower quality solutions. We propose partial and full approximate solutions to the Newton systems. The specific approximate solution depends on estimates of the active and inactive constraints at the solution. These sets are at each iteration estimated by basic heuristics. The partial approximate solutions are computationally inexpensive, whereas a system of linear equations needs to be solved for the full approximate solution. The size of the system is determined by the estimate of the inactive constraints at the solution. In addition, we motivate and suggest two Newton-like approaches which are based on an intermediate step that consists of the partial approximate solutions. The theoretical setting is introduced and asymptotic error bounds are given. We also give numerical results to investigate the performance of the approximate solutions within and beyond the theoretical framework.


2017 ◽  
Vol 33 (1) ◽  
pp. 09-26
Author(s):  
QAMRUL HASAN ANSARI ◽  
◽  
AISHA REHAN ◽  
◽  

Inspired by the recent work of Takahashi et al. [W. Takahashi, H.-K. Xu and J.-C. Yao, Iterative methods for generalized split feasibility problems in Hilbert spaces, Set-Valued Var. Anal., 23 (2015), 205–221], in this paper, we study generalized split feasibility problems (GSFPs) in the setting of Banach spaces. We propose iterative algorithms to compute the approximate solutions of such problems. The weak convergence of the sequence generated by the proposed algorithms is studied. As applications, we derive some algorithms and convergence results for some problems from nonlinear analysis, namely, split feasibility problems, equilibrium problems, etc. Our results generalize several known results in the literature including the results of Takahashi et al. [W. Takahashi, H.-K. Xu and J.-C. Yao, Iterative methods for generalized split feasibility problems in Hilbert spaces, SetValued Var. Anal., 23 (2015), 205–221].


2019 ◽  
Vol 23 (Suppl. 1) ◽  
pp. 275-283
Author(s):  
Kubra Bicer ◽  
Mehmet Sezer

In this paper, a matrix method is developed to solve quadratic non-linear differential equations. It is assumed that the approximate solutions of main problem which we handle primarily, is in terms of Bernoulli polynomials. Both the approximate solution and the main problem are written in matrix form to obtain the solution. The absolute errors are applied to numeric examples to demonstrate efficiency and accuracy of this technique. The obtained tables and figures in the numeric examples show that this method is very sufficient and reliable for solution of non-linear equations. Also, a formula is utilized based on residual functions and mean value theorem to seek error bounds.


Sign in / Sign up

Export Citation Format

Share Document